- 深度强化学习 | 图文详细推导深度确定性策略梯度DDPG算法
Mr.Winter`
机器人人工智能数据挖掘深度学习神经网络强化学习具身智能
目录0专栏介绍1演员-评论家架构1.1Critic网络优化1.2Actor网络优化2深度确定性策略梯度算法0专栏介绍本专栏以贝尔曼最优方程等数学原理为根基,结合PyTorch框架逐层拆解DRL的核心算法(如DQN、PPO、SAC)逻辑。针对机器人运动规划场景,深入探讨如何将DRL与路径规划、动态避障等任务结合,包含仿真环境搭建、状态空间设计、奖励函数工程化调优等技术细节,旨在帮助读者掌握深度强化学
- 边缘计算与量子模型优化驱动医疗诊断新突破
内容概要在医疗人工智能领域,边缘计算与量子模型优化的协同演进正重构诊断系统的技术范式。通过将计算节点前置至医疗设备端,边缘架构有效解决了传统云端模型面临的实时性瓶颈,配合量子优化算法对复杂特征空间的快速寻优能力,使得CT、MRI等高维影像数据的解析效率提升显著。值得关注的是,框架选型直接影响着模型部署的可行性——TensorFlow在移动端推理优化方面的工具链完备性,与PyTorch动态图机制对迭
- pytorch图像分类全流程(二)
前人栽树,后人乘凉
datawhalepytorchpytorch分类python
本次使用的是ImageNet1000类别信息,resnet18预训练模型。记录一些一坑和知识点。在传入图片或视频之前我们都会对其进行预处理,归纳下来为四个字母RCTN:缩放、裁剪、转Tensor、归一化,可以使用transforms.Compose()函数打包对应四个函数进行预处理,当然这里有个小坑,transforms.Compose()只接受pillow格式的图像,不能拿opencv传入图片。
- PyTorch图像分类系列——流程概览
VAMOT
PyTorch图像分类系列pytorch深度学习分类计算机视觉
一、加载数据1.使用torchvision.datasets的方法加载经典数据集在此网址查看支持哪些经典数据集:Datasets—Torchvision0.18documentation(pytorch.org)data_train=torchvision.datasets.CIFAR10(root="CIFAR10",train=True,transform=ToTensor(),target_
- tensorflow sigmoid_cross_entropy_with_logits 函数解释及公式推导
CrazyWolf_081c
tensorflowsigmoid_cross_entropy_with_logits函数解释及公式推导tensorflow官方文档解释参考pytorch--BCELosspytorch--BCELoss解释参考定义在tensorflow/python/ops/nn_impl.py.功能:计算在给定logits和label之间的sigmoidcrossentropy。测量离散分类任务中的概率误差,
- Pytorch图像二分类代码 AlexNet
望舒向晚
Pytorchpytorch深度学习机器学习
importtorchimporttorch.nnasnnimporttorch.optimasoptimimporttorch.utils.dataimporttorch.nn.functionalasFimporttorchvisionfromtorchvisionimporttransformsfromPILimportImagedefcheck_image(path):try:im=Ima
- 基于逻辑回归的图像二分类算法实现(Pytorch版)
哎呦哥哥、
图像分类pytorch逻辑回归分类
基于逻辑回归的图像二分类算法实现(Pytorch版)数据集模型代码数据集链接:FastFoodClassificationDataset我们只使用Burger和Pizza这两类。模型代码importtorchimporttorch.nnasnnfromtorchvision.models.utilsimportload_state_dict_from_urlmodel_urls={'resnet5
- 深度学习系列----->环境搭建(Ubuntu)
二师兄用飘柔
深度学习历程深度学习ubuntu人工智能pytorchpython
1、前言电脑基础系统硬件情况:系统:ubuntu18.04、显卡:GTX1050Ti;后续的环境搭建都在此基础上进行。此次学习选择Pytorch作为深度学习的框架,选择的原因主要由于PyTorch在研究领域特别受欢迎,较多的论文框架也是基于其开发。2、anaconda+python3安装测试在学习深度学习的过程中会涉及到使用不同版本python包的问题,而anaconda可以便捷获取包且对包能够进
- 深度学习-常用环境配置
瑶山
AIlinux人工智能windowsCUDAPyTorch
目录Miniconda安装安装NVIDIA显卡驱动安装CUDA和cnDNNCUDAcuDNNPyTorch安装手动下载测试Miniconda安装最新版Miniconda搭建Python环境_miniconda创建python虚拟环境-CSDN博客安装NVIDIA显卡驱动直接进NVIDIA官网:NVIDIAGeForce驱动程序-N卡驱动|NVIDIA在这里有GeForce驱动程序,立即下载,这是下
- 2018 MacBook Pro 安装cuda+cuDNN+pytorch
2018MacBookPro安装cuda+cuDNN+pytorch根据CSDN上的两篇文章和知乎上的一篇文章,前前后后折腾了好几天,在一个小姐姐的帮助下终于装上了。我的环境系统版本:macOS10.13.6(17G10021)GPUDriverVersion:387.10.10.10.40.133CUDADriverVersion:410.130CUDA:cuda_10.0.130cuDNN:c
- 推荐项目: Few-Shot-Adversarial-Learning-for-face-swap
邱晋力
推荐项目:Few-Shot-Adversarial-Learning-for-face-swap去发现同类优质开源项目:https://gitcode.com/1、项目介绍Few-Shot-Adversarial-Learning-for-face-swap是一个基于PyTorch的开源实现,重演了三星AI实验室的一项前沿研究——“Few-ShotAdversarialLearningofReal
- 解读一个大学专业——信号与图像处理
专业定义与核心内容维度内容定义研究如何采集、处理、分析和理解一维信号(语音、雷达、脑电)和二维/三维图像(医学、遥感、工业视觉)。关键词数字信号处理(DSP)、图像处理、计算机视觉、模式识别、压缩感知、深度学习、GPU加速、嵌入式系统。技术栈MATLAB/Python+OpenCV/PyTorch+DSP/FPGA+GPU(CUDA)第五届先进算法与信号、图像处理国际学术会议(AASIP2025)
- PyTorch生成式人工智能(18)——循环神经网络详解与实现
盼小辉丶
pytorchrnn自然语言处理
PyTorch生成式人工智能(18)——循环神经网络详解与实现0.前言1.文本生成的挑战2.循环神经网络2.1文本数据2.2循环神经网络原理3.长短期记忆网络3.自然语言处理基础3.1分词3.2词嵌入3.3词嵌入在自然语言处理中的应用小结系列链接0.前言我们已经学习了如何生成数字和图像等内容。从本节开始,我们将主要聚焦于文本生成。人类语言极其复杂且充满细微差别,不仅仅涉及语法和词汇的理解,还包括上
- 为什么用Pytorch帮客户训练好了模型还要提供模型结构?
yuanpan
pytorch人工智能机器学习
如果我在训练模型后生成好了一个模型文件:mnist_model.pth我想把这个模型文件给第三方使用,而不告诉他模型定义的结构等信息,那么第三方是不是就用不起来这个模型?答案:是的。如果只提供.pth文件而不告知模型结构,第三方确实无法直接使用该模型。原因和解决方案如下:1.为什么无法直接使用?.pth文件仅保存参数:torch.save(model.state_dict(),'mnist_mod
- autodl云计算平台 使用ollama 部署lightrag 加入streamlit界面
42fourtytoo
云计算深度学习pytorch学习
1到autodl的算力市场里开一台机器镜像选择:PyTorch2.3.0、Python3.12(ubuntu22.04)、Cuda12.1我本来选择的Cuda12.4,但版本过高疑似会使ollama不使用GPU而只用CPU,后来换个镜像就好了2下载lightrag从lightrag的GitHub界面下载zip开机,上传zip,解压到autodl-tmp/lightrag下安装依赖,在文件夹下:pi
- opencv、torch、torchvision、tensorflow的区别
一、框架定位与核心差异PyTorch动态计算图:实时构建计算图支持Python原生控制流(如循环/条件),调试便捷。学术主导:2025年工业部署份额24%,适合快速原型开发(如无人机自动驾驶、情绪识别)。TensorFlow静态计算图优化:预编译图结构提升部署效率支持动态图(Eager模式)兼顾灵活性。工业部署首选:市场份额38%,擅长边缘计算(YOLO部署)和大规模项目(工业自动化)-59)。O
- PyTorch笔记6----------神经网络案例
HuashuiMu花水木
PyTorch笔记pytorch笔记
1.回归网络波士顿房价预测模型搭建波士顿房价数据集下载链接:百度网盘请输入提取码提取码:5279导入所需包importtorchimportnumpyasnpimportre读取数据ff=open('housing.data').readlines()data=[]foriteminff:out=re.sub(r"\s{2,}","",item).strip()#通过正则表达式去除所有空格data
- 【AI 赋能:Python 人工智能应用实战】5. 梯度下降家族:SGD/Adam优化器对比实验与选择策略
AI_DL_CODE
人工智能python梯度下降优化器SGDAdamPyTorch
摘要:本文系统解析梯度下降优化器的核心原理与演进脉络,构建从理论到实战的完整知识体系。理论部分梳理优化器发展里程碑,从1951年的SGD到2018年的AdamW,揭示技术迭代逻辑;通过数学公式对比SGD、Momentum、Adam等核心算法的更新机制,解析动量加速、自适应学习率的创新点。结合损失曲面分析,阐释Momentum如何逃离鞍点、Adam如何处理悬崖梯度。实战模块基于PyTorch在MNI
- 使用UV管理PyTorch项目
PyTorch是深度学习研究和开发的流行选择。可以使用uv管理PyTorch项目,包括不同Python版本依赖、管理环境、甚至加速器选择等。安装Pytorch从打包角度来看,PyTorch有几个不常见的特点:许多PyTorchwheel托管在专门的索引上,而非Python包索引(PyPI)。因此,安装PyTorch通常需要配置项目使用PyTorch专属索引。PyTorch为每种加速器生成不同的构建
- 模型移植实战:从PyTorch到ONNX完整指南
慕婉0307
神经网络pytorch人工智能python
一、认识ONNXONNX(OpenNeuralNetworkExchange)是一种开放的模型表示格式,由微软和Facebook(现Meta)在2017年共同推出,旨在解决深度学习模型在不同框架之间的互操作性问题。ONNX的主要优势包括:跨框架兼容性:支持主流深度学习框架间的模型转换,包括PyTorch、TensorFlow、MXNet、CNTK等例如,可以将PyTorch训练的ResNet模型导
- PyTorch的基础概念和复杂模型的基本使用
香蕉可乐荷包蛋
AI大模型项目中的使用pytorch人工智能python
文章目录一、PyTorch基础概念二、复杂模型的学习使用一、PyTorch基础概念张量(Tensor)操作:张量是PyTorch中的基本数据结构,类似于NumPy的数组,但支持GPU加速常见操作包括创建张量、张量运算、索引、切片等importtorch#创建张量x=torch.randn(3,4)y=torch.zeros(3,4)#张量运算z=x+y自动求导(Autograd):PyTorch的
- python3.9安装tensorflow-gpu 2.6.0和torch-gpu版本各依赖包的版本对应关系
首先使用的cuDNN(8.1)、CUDA(11.2)、tensorflow-gpu(2.6.0)、python(3.9)之间对应版本Window环境下安装pytorch下载地址tensorflow官网CUDA下载官网cuDNN下载官网注意:cuDNN需要注册absl-py0.15.0astunparse1.6.3cachetools5.3.2certifi2023.7.22charset-norm
- 深度学习方法生成抓取位姿与6D姿态估计的完整实现
ZPC8210
ROS深度学习人工智能
如何将GraspNet等深度学习模型与6D姿态估计集成到ROS2和MoveIt中,实现高精度的机器人抓取系统。1.系统架构text[RGB-D传感器]→[物体检测与6D姿态估计]→[GraspNet抓取位姿生成]→[MoveIt运动规划]→[执行抓取]2.环境配置2.1安装依赖bash#安装PyTorch(根据CUDA版本选择)pip3installtorchtorchvisiontorchaud
- Unet源码实现(pytorch)
wyn20001128
pytorch人工智能python
U-Net是一种用于生物医学图像分割的卷积神经网络架构。它通过引入一种新颖的网络结构和训练策略解决了传统方法在数据量不足时面临的挑战。U-Net的主要思想是利用数据增强技术来高效利用有限的标注样本,并通过独特的网络设计来提高分割精度。主要贡献U-Net的主要贡献包括:1、数据增强策略:使用随机弹性变形和其他形式的数据增强来增加训练数据的多样性,从而在有限的数据集上训练出更强大的模型。2、U形网络结
- pytorch的学习笔记
wyn20001128
算法
一cuda 2006年,NVIDIA公司发布了CUDA(ComputeUnifiedDeviceArchitecture),是一种新的操作GPU计算的硬件和软件架构,是建立在NVIDIA的GPUs上的一个通用并行计算平台和编程模型,它提供了GPU编程的简易接口,基于CUDA编程可以构建基于GPU计算的应用程序。 CPU是用于负责逻辑性比较强的计算,GPU专注于执行高度线程化的并行处理任务。所以
- 神经网络项目--基于FPGA的AI简易项目(1-9图片数字识别)
霖12
深度学习pytorch神经网络fpga开发人工智能机器学习
1.训练MNIST模型importtorch#导入pytorch核心库importtorch.nnasnn#神经网络模块,如卷积层importtorch.optimasoptim#优化器fromtorchvisionimportdatasets,transforms#数据集与图像预处理工具#定义CNN模型classSimpleCNN(nn.Module):#PyTorch库中所有神经网络的“基础模
- 神经网络常见激活函数 13-Softplus函数
亲持红叶
神经网络常见激活函数神经网络人工智能深度学习
文章目录Softplus函数+导函数函数和导函数图像优缺点PyTorch中的Softplus函数TensorFlow中的Softplus函数Softplus函数+导函数Softplus函数Softplus(x)=ln(1+e x)\begin{aligned}\operatorname{Softplus}(x)&=\ln\bigl(1+e^{\,x}\bigr)\end{aligned}Sof
- Anaconda 、Pytorch下载教程(保姆级)
湲绘
pytorchopencv人工智能condapython深度学习
#因为每次都自己去搜教程太麻烦,索性写个博客记录一下#一、Anaconda的下载与安装进入Anaconda官网官网:Anaconda|TheWorld’sMostPopularDataSciencePlatform下载地址:FreeDownload|Anaconda直接点击Download即可版本对应表如下,选择自己想要的python版本下载就好[环境配置]anaconda3的base环境与pyt
- 基于AutoCut实现在文档中按照片段剪辑视频
Mr数据杨
Python音频技术音视频
本项目致力于通过构建一个具备深度学习支持的多功能视频处理环境,为用户提供高效、智能的视频编辑和字幕生成工具。依托Anaconda环境管理工具和PyTorch的GPU加速能力,用户能够迅速搭建一个符合项目需求的Python环境。结合FunClip的源代码以及相关插件的安装和配置,用户可充分利用项目所支持的图像、音频识别功能,并以极少的配置便获得理想的视频裁剪效果。项目的核心在于简化深度学习项目的环境
- 嵌入式学习-PyTorch(8)-day24
LGGGGGQ
学习pytorch深度学习
torch.optim优化器torch.optim是PyTorch中用于优化神经网络参数的模块,里面实现了一系列常用的优化算法,比如SGD、Adam、RMSprop等,主要负责根据梯度更新模型的参数。️核心组成1.常用优化器优化器作用典型参数torch.optim.SGD标准随机梯度下降,支持momentumlr,momentum,weight_decaytorch.optim.Adam自适应学习
- 安装数据库首次应用
Array_06
javaoraclesql
可是为什么再一次失败之后就变成直接跳过那个要求
enter full pathname of java.exe的界面
这个java.exe是你的Oracle 11g安装目录中例如:【F:\app\chen\product\11.2.0\dbhome_1\jdk\jre\bin】下的java.exe 。不是你的电脑安装的java jdk下的java.exe!
注意第一次,使用SQL D
- Weblogic Server Console密码修改和遗忘解决方法
bijian1013
Welogic
在工作中一同事将Weblogic的console的密码忘记了,通过网上查询资料解决,实践整理了一下。
一.修改Console密码
打开weblogic控制台,安全领域 --> myrealm -->&n
- IllegalStateException: Cannot forward a response that is already committed
Cwind
javaServlets
对于初学者来说,一个常见的误解是:当调用 forward() 或者 sendRedirect() 时控制流将会自动跳出原函数。标题所示错误通常是基于此误解而引起的。 示例代码:
protected void doPost() {
if (someCondition) {
sendRedirect();
}
forward(); // Thi
- 基于流的装饰设计模式
木zi_鸣
设计模式
当想要对已有类的对象进行功能增强时,可以定义一个类,将已有对象传入,基于已有的功能,并提供加强功能。
自定义的类成为装饰类
模仿BufferedReader,对Reader进行包装,体现装饰设计模式
装饰类通常会通过构造方法接受被装饰的对象,并基于被装饰的对象功能,提供更强的功能。
装饰模式比继承灵活,避免继承臃肿,降低了类与类之间的关系
装饰类因为增强已有对象,具备的功能该
- Linux中的uniq命令
被触发
linux
Linux命令uniq的作用是过滤重复部分显示文件内容,这个命令读取输入文件,并比较相邻的行。在正常情 况下,第二个及以后更多个重复行将被删去,行比较是根据所用字符集的排序序列进行的。该命令加工后的结果写到输出文件中。输入文件和输出文件必须不同。如 果输入文件用“- ”表示,则从标准输入读取。
AD:
uniq [选项] 文件
说明:这个命令读取输入文件,并比较相邻的行。在正常情况下,第二个
- 正则表达式Pattern
肆无忌惮_
Pattern
正则表达式是符合一定规则的表达式,用来专门操作字符串,对字符创进行匹配,切割,替换,获取。
例如,我们需要对QQ号码格式进行检验
规则是长度6~12位 不能0开头 只能是数字,我们可以一位一位进行比较,利用parseLong进行判断,或者是用正则表达式来匹配[1-9][0-9]{4,14} 或者 [1-9]\d{4,14}
&nbs
- Oracle高级查询之OVER (PARTITION BY ..)
知了ing
oraclesql
一、rank()/dense_rank() over(partition by ...order by ...)
现在客户有这样一个需求,查询每个部门工资最高的雇员的信息,相信有一定oracle应用知识的同学都能写出下面的SQL语句:
select e.ename, e.job, e.sal, e.deptno
from scott.emp e,
(se
- Python调试
矮蛋蛋
pythonpdb
原文地址:
http://blog.csdn.net/xuyuefei1988/article/details/19399137
1、下面网上收罗的资料初学者应该够用了,但对比IBM的Python 代码调试技巧:
IBM:包括 pdb 模块、利用 PyDev 和 Eclipse 集成进行调试、PyCharm 以及 Debug 日志进行调试:
http://www.ibm.com/d
- webservice传递自定义对象时函数为空,以及boolean不对应的问题
alleni123
webservice
今天在客户端调用方法
NodeStatus status=iservice.getNodeStatus().
结果NodeStatus的属性都是null。
进行debug之后,发现服务器端返回的确实是有值的对象。
后来发现原来是因为在客户端,NodeStatus的setter全部被我删除了。
本来是因为逻辑上不需要在客户端使用setter, 结果改了之后竟然不能获取带属性值的
- java如何干掉指针,又如何巧妙的通过引用来操作指针————>说的就是java指针
百合不是茶
C语言的强大在于可以直接操作指针的地址,通过改变指针的地址指向来达到更改地址的目的,又是由于c语言的指针过于强大,初学者很难掌握, java的出现解决了c,c++中指针的问题 java将指针封装在底层,开发人员是不能够去操作指针的地址,但是可以通过引用来间接的操作:
定义一个指针p来指向a的地址(&是地址符号):
- Eclipse打不开,提示“An error has occurred.See the log file ***/.log”
bijian1013
eclipse
打开eclipse工作目录的\.metadata\.log文件,发现如下错误:
!ENTRY org.eclipse.osgi 4 0 2012-09-10 09:28:57.139
!MESSAGE Application error
!STACK 1
java.lang.NoClassDefFoundError: org/eclipse/core/resources/IContai
- spring aop实例annotation方法实现
bijian1013
javaspringAOPannotation
在spring aop实例中我们通过配置xml文件来实现AOP,这里学习使用annotation来实现,使用annotation其实就是指明具体的aspect,pointcut和advice。1.申明一个切面(用一个类来实现)在这个切面里,包括了advice和pointcut
AdviceMethods.jav
- [Velocity一]Velocity语法基础入门
bit1129
velocity
用户和开发人员参考文档
http://velocity.apache.org/engine/releases/velocity-1.7/developer-guide.html
注释
1.行级注释##
2.多行注释#* *#
变量定义
使用$开头的字符串是变量定义,例如$var1, $var2,
赋值
使用#set为变量赋值,例
- 【Kafka十一】关于Kafka的副本管理
bit1129
kafka
1. 关于request.required.acks
request.required.acks控制者Producer写请求的什么时候可以确认写成功,默认是0,
0表示即不进行确认即返回。
1表示Leader写成功即返回,此时还没有进行写数据同步到其它Follower Partition中
-1表示根据指定的最少Partition确认后才返回,这个在
Th
- lua统计nginx内部变量数据
ronin47
lua nginx 统计
server {
listen 80;
server_name photo.domain.com;
location /{set $str $uri;
content_by_lua '
local url = ngx.var.uri
local res = ngx.location.capture(
- java-11.二叉树中节点的最大距离
bylijinnan
java
import java.util.ArrayList;
import java.util.List;
public class MaxLenInBinTree {
/*
a. 1
/ \
2 3
/ \ / \
4 5 6 7
max=4 pass "root"
- Netty源码学习-ReadTimeoutHandler
bylijinnan
javanetty
ReadTimeoutHandler的实现思路:
开启一个定时任务,如果在指定时间内没有接收到消息,则抛出ReadTimeoutException
这个异常的捕获,在开发中,交给跟在ReadTimeoutHandler后面的ChannelHandler,例如
private final ChannelHandler timeoutHandler =
new ReadTim
- jquery验证上传文件样式及大小(好用)
cngolon
文件上传jquery验证
<!DOCTYPE html>
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
<script src="jquery1.8/jquery-1.8.0.
- 浏览器兼容【转】
cuishikuan
css浏览器IE
浏览器兼容问题一:不同浏览器的标签默认的外补丁和内补丁不同
问题症状:随便写几个标签,不加样式控制的情况下,各自的margin 和padding差异较大。
碰到频率:100%
解决方案:CSS里 *{margin:0;padding:0;}
备注:这个是最常见的也是最易解决的一个浏览器兼容性问题,几乎所有的CSS文件开头都会用通配符*来设
- Shell特殊变量:Shell $0, $#, $*, $@, $?, $$和命令行参数
daizj
shell$#$?特殊变量
前面已经讲到,变量名只能包含数字、字母和下划线,因为某些包含其他字符的变量有特殊含义,这样的变量被称为特殊变量。例如,$ 表示当前Shell进程的ID,即pid,看下面的代码:
$echo $$
运行结果
29949
特殊变量列表 变量 含义 $0 当前脚本的文件名 $n 传递给脚本或函数的参数。n 是一个数字,表示第几个参数。例如,第一个
- 程序设计KISS 原则-------KEEP IT SIMPLE, STUPID!
dcj3sjt126com
unix
翻到一本书,讲到编程一般原则是kiss:Keep It Simple, Stupid.对这个原则深有体会,其实不仅编程如此,而且系统架构也是如此。
KEEP IT SIMPLE, STUPID! 编写只做一件事情,并且要做好的程序;编写可以在一起工作的程序,编写处理文本流的程序,因为这是通用的接口。这就是UNIX哲学.所有的哲学真 正的浓缩为一个铁一样的定律,高明的工程师的神圣的“KISS 原
- android Activity间List传值
dcj3sjt126com
Activity
第一个Activity:
import java.util.ArrayList;import java.util.HashMap;import java.util.List;import java.util.Map;import android.app.Activity;import android.content.Intent;import android.os.Bundle;import a
- tomcat 设置java虚拟机内存
eksliang
tomcat 内存设置
转载请出自出处:http://eksliang.iteye.com/blog/2117772
http://eksliang.iteye.com/
常见的内存溢出有以下两种:
java.lang.OutOfMemoryError: PermGen space
java.lang.OutOfMemoryError: Java heap space
------------
- Android 数据库事务处理
gqdy365
android
使用SQLiteDatabase的beginTransaction()方法可以开启一个事务,程序执行到endTransaction() 方法时会检查事务的标志是否为成功,如果程序执行到endTransaction()之前调用了setTransactionSuccessful() 方法设置事务的标志为成功则提交事务,如果没有调用setTransactionSuccessful() 方法则回滚事务。事
- Java 打开浏览器
hw1287789687
打开网址open浏览器open browser打开url打开浏览器
使用java 语言如何打开浏览器呢?
我们先研究下在cmd窗口中,如何打开网址
使用IE 打开
D:\software\bin>cmd /c start iexplore http://hw1287789687.iteye.com/blog/2153709
使用火狐打开
D:\software\bin>cmd /c start firefox http://hw1287789
- ReplaceGoogleCDN:将 Google CDN 替换为国内的 Chrome 插件
justjavac
chromeGooglegoogle apichrome插件
Chrome Web Store 安装地址: https://chrome.google.com/webstore/detail/replace-google-cdn/kpampjmfiopfpkkepbllemkibefkiice
由于众所周知的原因,只需替换一个域名就可以继续使用Google提供的前端公共库了。 同样,通过script标记引用这些资源,让网站访问速度瞬间提速吧
- 进程VS.线程
m635674608
线程
资料来源:
http://www.liaoxuefeng.com/wiki/001374738125095c955c1e6d8bb493182103fac9270762a000/001397567993007df355a3394da48f0bf14960f0c78753f000 1、Apache最早就是采用多进程模式 2、IIS服务器默认采用多线程模式 3、多进程优缺点 优点:
多进程模式最大
- Linux下安装MemCached
字符串
memcached
前提准备:1. MemCached目前最新版本为:1.4.22,可以从官网下载到。2. MemCached依赖libevent,因此在安装MemCached之前需要先安装libevent。2.1 运行下面命令,查看系统是否已安装libevent。[root@SecurityCheck ~]# rpm -qa|grep libevent libevent-headers-1.4.13-4.el6.n
- java设计模式之--jdk动态代理(实现aop编程)
Supanccy2013
javaDAO设计模式AOP
与静态代理类对照的是动态代理类,动态代理类的字节码在程序运行时由Java反射机制动态生成,无需程序员手工编写它的源代码。动态代理类不仅简化了编程工作,而且提高了软件系统的可扩展性,因为Java 反射机制可以生成任意类型的动态代理类。java.lang.reflect 包中的Proxy类和InvocationHandler 接口提供了生成动态代理类的能力。
&
- Spring 4.2新特性-对java8默认方法(default method)定义Bean的支持
wiselyman
spring 4
2.1 默认方法(default method)
java8引入了一个default medthod;
用来扩展已有的接口,在对已有接口的使用不产生任何影响的情况下,添加扩展
使用default关键字
Spring 4.2支持加载在默认方法里声明的bean
2.2
将要被声明成bean的类
public class DemoService {