52、人脸检测部署RK3399 PRO,完成RKNN的人脸检测

基本思想:帮助好友部署一个人脸检测模型,也是自己业务需求,部分代码来自好友陈同学,自己改了改c++的代码可以部署rk3399pro上了,其它资料见附录吧,官方的代码并未将landmark的点打印出来,rknn将这个信息补上了~

链接: https://pan.baidu.com/s/1MSZG-XeIFmBfYJwUMThzDQ?pwd=1ujq 提取码: 1ujq

测试图片

52、人脸检测部署RK3399 PRO,完成RKNN的人脸检测_第1张图片

一、测试mnn效果,其中mnn直接搬运了大佬参考附录一

cmakelists.txt

cmake_minimum_required(VERSION 3.16)
project(untitled10)
set(CMAKE_CXX_FLAGS "-std=c++11")
set(CMAKE_CXX_STANDARD 11)
include_directories(${CMAKE_SOURCE_DIR})
include_directories(${CMAKE_SOURCE_DIR}/include)
include_directories(${CMAKE_SOURCE_DIR}/include/MNN)
find_package(OpenCV REQUIRED)
#message(STATUS ${OpenCV_INCLUDE_DIRS})
#添加头文件
include_directories(${OpenCV_INCLUDE_DIRS})
#链接Opencv库

add_library(libmnn SHARED IMPORTED)
#set_target_properties(libncnn PROPERTIES IMPORTED_LOCATION ${CMAKE_SOURCE_DIR}/lib/libncnn.a)

set_target_properties(libmnn PROPERTIES IMPORTED_LOCATION ${CMAKE_SOURCE_DIR}/lib/libMNN.so)
add_executable(untitled10 main.cpp retinaface.cpp)
target_link_libraries(untitled10 ${OpenCV_LIBS}  libmnn )

main.cpp

#include 
#include "retinaface.h"
int main() {

    RetinaFace *item=new RetinaFace();
    item->Initial("../FaceDetector8.mnn");
    cv::Mat img=cv::imread("../0.jpeg");
    vector faces;
    item->DetectFace(img,faces);
    for(auto &face:faces){
        cv::rectangle(img, cv::Point(face.rect.x, face.rect.y),
                      cv::Point(face.rect.x + face.rect.width, face.rect.y + face.rect.height),
                      cv::Scalar(0, 255, 0), 2);
        string score = to_string(face.prob);
        cv::putText(img, score, cv::Point(face.rect.x, face.rect.y),cv::FONT_HERSHEY_DUPLEX, 0.6, (0, 255, 255));
    }
    cv::imshow("image",img);
    cv::waitKey(0);
    delete item;
    return 0;
}

retinaface.h

#include 
#include 
#include 
#include 
#include 
#include 
#include "opencv2/opencv.hpp"
#include "opencv2/highgui.hpp"

using namespace std;

struct FaceObject {
    cv::Rect_ rect;
    float prob;
};

struct Anchor{
    float cx;
    float cy;
    float s_kx;
    float s_ky;
};


class RetinaFace {
public:
    RetinaFace ();
    int Initial(std::string model_path);
    ~RetinaFace();
    int DetectFace(cv::Mat img,vector &faces);

private:
    MNN::Interpreter *net_ = nullptr;
    MNN::Session *session_ = nullptr;
    MNN::CV::ImageProcess::Config preProcessConfig_;

    MNN::Tensor* input_;
    MNN::Tensor* loc_;
    MNN::Tensor* cls_;
    vector Anchors_;
    int width_;
    int height_;
    float mean_vals_[3];
    float conf_;
    int top_k_;
};

retinaface.cpp

#include "retinaface.h"

#include 
#include 
#include 
#include 
#include 

int32_t NowMicros() {
    struct timeval tv;
    gettimeofday(&tv,nullptr);
    return static_cast(tv.tv_sec)*1000+tv.tv_usec/1000;
}

float intersection_area(const FaceObject& a, const FaceObject& b) {
    cv::Rect_ inter = a.rect & b.rect;
    return inter.area();
}

void generate_anchors(int height,int width,vector &Anchors) {
    int steps[3] = {8,16,32};
    int min_sizes[3][2] = {{16,32},{64,128},{256,512}};
    int feature_maps[3][2] = {0};
    for(int i=0;i<3;i++) {
        feature_maps[i][0] = ceil(height*1.0/steps[i]);
        feature_maps[i][1] = ceil(width*1.0/steps[i]);
    }
    Anchors.clear();
    for(int i=0;i<3;i++) {
        int *min_size =  min_sizes[i];
        for(int id_y=0;id_y &Anchors, float *out_loc, int width, int height) {
    float variance[2] = {0.1,0.2};
    for (int q=0; q<1; q++) {
        for (int y=0; y<16800; y++) {
            out_loc[y*4] = Anchors[y].cx + loc[0]*variance[0]*Anchors[y].s_kx;
            out_loc[y*4+1] = Anchors[y].cy + loc[1]*variance[0]*Anchors[y].s_ky;

            out_loc[y*4+2] = (Anchors[y].s_kx*exp(loc[2]*variance[1]))*width;  //width
            out_loc[y*4+3] = (Anchors[y].s_ky*exp(loc[3]*variance[1]))*height;  //height
            out_loc[y*4] = out_loc[y*4]*width - out_loc[y*4+2]/2;          //x0
            out_loc[y*4+1] = out_loc[y*4+1]*height - out_loc[y*4+3]/2;      //y0
            loc += 4;
        }
    }
}

void nms_sorted_bboxes(const std::vector& faceobjects, std::vector& picked, float nms_threshold) {
    picked.clear();
    const int n = faceobjects.size();
    vector areas(n);
    for (int i = 0; i < n; i++) {
        areas[i] = faceobjects[i].rect.area();
    }
    for (int i = 0; i < n; i++) {
        const FaceObject& a = faceobjects[i];
        int keep = 1;
        for (int j = 0; j < (int)picked.size(); j++) {
            const FaceObject& b = faceobjects[picked[j]];
            // intersection over union
            float inter_area = intersection_area(a, b);
            float union_area = areas[i] + areas[picked[j]] - inter_area;
            //float IoU = inter_area / union_area
            if (inter_area / union_area > nms_threshold)
                keep = 0;
        }
        if (keep)
            picked.push_back(i);
    }

}

bool FaceLargerScore(FaceObject  a, FaceObject b) {
    if ( a.prob > b.prob) {
        return true;
    } else {
        return false;
    }
}

RetinaFace::RetinaFace() {
    width_ = 640;
    height_ = 640;
    mean_vals_[0] = 104.0f;
    mean_vals_[1] = 117.0f;
    mean_vals_[2] = 123.0f;
    conf_ = 0.7;
    top_k_ = 100;
    generate_anchors(width_,height_,Anchors_);
}

RetinaFace::~RetinaFace() {
    if(net_ != nullptr) {
        net_->releaseModel();
        net_->releaseSession(session_);
    }
    Anchors_.clear();
}

int RetinaFace::Initial(std::string model_path) {
    std::string modelpath = model_path ;
    net_ = MNN::Interpreter::createFromFile(modelpath.c_str());
    MNN::ScheduleConfig netConfig;
    netConfig.type      = MNN_FORWARD_CPU;
    netConfig.numThread = 4;
    session_ = net_->createSession(netConfig);
    input_ = net_->getSessionInput(session_, "input0");

    net_->resizeTensor(input_, {1, 3, width_, height_});
    net_->resizeSession(session_);

    cls_ = net_->getSessionOutput(session_, "576");
    loc_ = net_->getSessionOutput(session_, "output0");
    ::memcpy(preProcessConfig_.mean, mean_vals_, sizeof(mean_vals_));
    preProcessConfig_.sourceFormat = MNN::CV::BGR;
    preProcessConfig_.destFormat = MNN::CV::BGR;
    return 0;
}


int RetinaFace::DetectFace(const cv::Mat img,vector &faces) {
    //先pad将图像填补为正方形,pre-process

    cv::Mat pad_img;
    int long_size = max(img.cols,img.rows);
    if (long_size == img.cols) {
        int top = (long_size - img.rows)/2;
        int bottom = long_size - top - img.rows;
        cv::copyMakeBorder(img,pad_img,top,bottom,0,0,cv::BORDER_CONSTANT,0);
    } else {
        int left = (long_size - img.cols)/2;
        int right = long_size - left - img.cols;
        cv::copyMakeBorder(img,pad_img,0,0,left,right,cv::BORDER_CONSTANT,0);
    }
    //pad为正方形后,再resize为模型的固定输入大小(640,640)
    cv::Mat bgr;
    cv::resize(pad_img,bgr,cv::Size(width_,height_));
    net_->resizeTensor(input_, {1, 3, width_, height_});
    net_->resizeSession(session_);
    //mnn 输入
    MNN::CV::ImageProcess *pretreat_ = MNN::CV::ImageProcess::create(preProcessConfig_);
    pretreat_->convert(bgr.data, width_, height_, bgr.step[0], input_);
    net_->runSession(session_);

    MNN::Tensor clsHost(cls_, MNN::Tensor::CAFFE);
    MNN::Tensor locHost(loc_, MNN::Tensor::CAFFE);

    cls_->copyToHostTensor(&clsHost);
    loc_->copyToHostTensor(&locHost);

    std::vector shape0 = clsHost.shape();
    std::vector shape1 = locHost.shape();
    int c = shape0[0];
    int length = shape0[1];
    std::cout<();
    auto loc_data = locHost.host();

    decode(loc_data, Anchors_, out_loc, width_, height_);


    vector tempfaces;
    //将大于阈值的框存进temfaces,准备下一步的nms
    for (int q=0; q conf_) {
                FaceObject face;
                face.prob = cls_data[2*y+1];
                face.rect.x = out_loc[4*y];
                face.rect.y = out_loc[4*y+1];
                face.rect.width = out_loc[4*y+2];
                face.rect.height = out_loc[4*y+3];
                tempfaces.push_back(face);
            }
        }
    }
    //根据分数排序,保留top_k
    std::sort(tempfaces.begin(), tempfaces.end(),FaceLargerScore);
    if (tempfaces.size() > top_k_)
        tempfaces.resize(top_k_);

    //执行nms
    std::vector picked;
    int start = NowMicros();
    nms_sorted_bboxes(tempfaces, picked, 0.4);
    int end = NowMicros();
    std::cout<<"nms:"<<(end-start)<<"ms"< 0) ? real_x :0;
        real_y = (real_y > 0) ? real_y :0;
        real_width = ((real_x + real_width) < img.cols ) ? real_width : (img.cols - real_x);
        real_height = ((real_y + real_height) < img.rows ) ? real_height : (img.rows - real_y);

        face.rect.x = real_x;
        face.rect.y = real_y;
        face.rect.width = real_width;
        face.rect.height = real_height;
        faces.push_back(face);
    }
    return 0;
}

二、测试rknn效果

py代码

from rknn.api import RKNN
import numpy as np
import cv2
import time
from math import ceil
from itertools import product as product

ONNX_MODEL = 'FaceDetector8.onnx'
RKNN_MODEL = 'retinaface.rknn'
img_path = '0.jpeg'


IMG_SIZE = 640

cfg_mnet = {
    'min_sizes': [[16, 32], [64, 128], [256, 512]],
    'steps': [8, 16, 32],
    'variance': [0.1, 0.2],
}
# 得到anchor
class Anchors(object):
    def __init__(self, cfg, image_size=None):
        super(Anchors, self).__init__()
        self.min_sizes  = cfg['min_sizes']
        self.steps      = cfg['steps']
        #---------------------------#
        #   图片的尺寸
        #---------------------------#
        self.image_size = image_size
        #---------------------------#
        #   三个有效特征层高和宽
        #---------------------------#
        self.feature_maps = [[ceil(self.image_size[0]/step), ceil(self.image_size[1]/step)] for step in self.steps]

    def get_anchors(self):
        anchors = []
        for k, f in enumerate(self.feature_maps):
            min_sizes = self.min_sizes[k]
            #-----------------------------------------#
            #   对特征层的高和宽进行循环迭代
            #-----------------------------------------#
            for i, j in product(range(f[0]), range(f[1])):
                for min_size in min_sizes:
                    s_kx = min_size / self.image_size[1]
                    s_ky = min_size / self.image_size[0]
                    dense_cx = [x * self.steps[k] / self.image_size[1] for x in [j + 0.5]]
                    dense_cy = [y * self.steps[k] / self.image_size[0] for y in [i + 0.5]]
                    for cy, cx in product(dense_cy, dense_cx):
                        anchors += [cx, cy, s_kx, s_ky]
        output_np=np.array(anchors).reshape(-1,4)
        return output_np
# 填充灰条,实现resize
def letterbox_image (image, size):
    ih, iw, _ = np.shape(image)
    w, h = size
    scale = min(w/iw, h/ih)
    nw = int(iw*scale)
    nh = int(ih*scale)

    image = cv2.resize(image, (nw, nh))
    new_image = np.ones([size[1], size[0], 3]) * 128
    new_image[(h-nh)//2:nh+(h-nh)//2, (w-nw)//2:nw+(w-nw)//2] = image
    return new_image
# 人脸框坐标解码
def decode(loc, priors, variances):
    boxes = np.concatenate((priors[:, :2] + loc[:, :2] * variances[0] * priors[:, 2:],
                    priors[:, 2:] * np.exp(loc[:, 2:] * variances[1])), 1)
    boxes[:, :2] -= boxes[:, 2:] / 2
    boxes[:, 2:] += boxes[:, :2]
    return boxes
# 人脸关键点解码
def decode_landm(pre, priors, variances):
    landms = np.concatenate((priors[:, :2] + pre[:, :2] * variances[0] * priors[:, 2:],
                        priors[:, :2] + pre[:, 2:4] * variances[0] * priors[:, 2:],
                        priors[:, :2] + pre[:, 4:6] * variances[0] * priors[:, 2:],
                        priors[:, :2] + pre[:, 6:8] * variances[0] * priors[:, 2:],
                        priors[:, :2] + pre[:, 8:10] * variances[0] * priors[:, 2:],
                        ), 1)
    return landms


def pynms(dets, thresh): #非极大抑制
    x1 = dets[:, 0]
    y1 = dets[:, 1]
    x2 = dets[:, 2]
    y2 = dets[:, 3]
    areas = (y2 - y1) * (x2 - x1)
    scores = dets[:, 4]
    keep = []
    index = scores.argsort()[::-1] #置信度从大到小排序(下标)

    while index.size > 0:
        i = index[0]
        keep.append(i)

        x11 = np.maximum(x1[i], x1[index[1:]])  # 计算相交面积
        y11 = np.maximum(y1[i], y1[index[1:]])
        x22 = np.minimum(x2[i], x2[index[1:]])
        y22 = np.minimum(y2[i], y2[index[1:]])

        w = np.maximum(0, x22 - x11)  # 当两个框不想交时x22 - x11或y22 - y11 为负数,
                                           # 两框不相交时把相交面积置0
        h = np.maximum(0, y22 - y11)  #

        overlaps = w * h
        ious = overlaps / (areas[i] + areas[index[1:]] - overlaps)#计算IOU

        idx = np.where(ious <= thresh)[0]  #IOU小于thresh的框保留下来
        index = index[idx + 1]

    return keep

def filter_box(org_box,conf_thres,iou_thres): #过滤掉无用的框
    conf = org_box[..., 4] > conf_thres #删除置信度小于conf_thres的BOX
    # print(conf)
    box = org_box[conf == True]
    output = []
    curr_cls_box = np.array(box)
    curr_cls_box[:,:4]=curr_cls_box[:,:4]*640
    curr_cls_box[:,5:]=curr_cls_box[:,5:]*640
    curr_out_box = pynms(curr_cls_box,iou_thres) #经过非极大抑制后输出的BOX下标
    for k in curr_out_box:
        output.append(curr_cls_box[k])  #利用下标取出非极大抑制后的BOX
    output = np.array(output)
    return output
# 输入图片处理
def procss_img(img_path):
    img=cv2.imread(img_path)
    img=cv2.cvtColor(img,cv2.COLOR_BGR2RGB)
    img=letterbox_image(img,(IMG_SIZE,IMG_SIZE))
    or_img=np.array(img,np.uint8)
    or_img=cv2.cvtColor(or_img,cv2.COLOR_RGB2BGR)
    img=img.astype(dtype=np.float32)
    img-=np.array((104,117,123),np.float32)
    # img = img.transpose(2, 0, 1)
    img=np.expand_dims(img,axis=0)

    return img,or_img  #img为模型输入,or_img用于画人脸框

# 画人脸框和5个关键点
def draw_img(boxes_conf_landms,old_image):
    for b in boxes_conf_landms:
        text = "{:.4f}".format(b[4])
        b = list(map(int, b))
        #   b[0]-b[3]为人脸框的坐标,b[4]为得分
        cv2.rectangle(old_image, (b[0], b[1]), (b[2], b[3]), (0, 0, 255), 2)
        cx = b[0]
        cy = b[1] + 12
        cv2.putText(old_image, text, (cx, cy),cv2.FONT_HERSHEY_DUPLEX, 0.5, (255, 255, 255))
        #   b[5]-b[14]为人脸关键点的坐标
        cv2.circle(old_image, (b[5], b[6]), 1, (0, 0, 255), 4)
        cv2.circle(old_image, (b[7], b[8]), 1, (0, 255, 255), 4)
        cv2.circle(old_image, (b[9], b[10]), 1, (255, 0, 255), 4)
        cv2.circle(old_image, (b[11], b[12]), 1, (0, 255, 0), 4)
        cv2.circle(old_image, (b[13], b[14]), 1, (255, 0, 0), 4)
    return old_image

if __name__ == '__main__':

    # # Create RKNN object
    rknn = RKNN(verbose=True)
    # Load rknn model
    print('--> Loading model')


    # pre-process config
    print('--> config model')
    rknn.config(mean_values=[[104, 117, 123]],
                target_platform='rk3399pro')
    print('done')

    print('--> Loading model')
    ret = rknn.load_onnx(model=ONNX_MODEL)
    if ret != 0:
        print('Load model  failed!')
        exit(ret)
    print('done')

    # Build model
    print('--> Building model')
    t1 = time.time()
    ret = rknn.build(do_quantization=True, dataset='dataset.txt')  # ,pre_compile=True  buzuo lianghua gaicheng False zheyang jieguo xiangtong he pythondaima
    t2 = time.time() - t1
    print("cost time = ", t2)
    if ret != 0:
        print('Build retainface failed!')
        exit(ret)
    print('done')

    # Export rknn model
    print('--> Export RKNN model')
    ret = rknn.export_rknn(RKNN_MODEL)

    img, or_img = procss_img(img_path)

    # Init runtime environment
    print('--> Init runtime environment')
    ret = rknn.init_runtime()
    print("151561515")
    if ret != 0:
        print('Init runtime environment failed!')
        exit(ret)
    print('done')


    # Inference
    print('--> Running model')
    outputs = rknn.inference(inputs=[img])

    #输出数据转为numpy数据格式
    output_1 = np.array(outputs[0]).squeeze()
    output_2 = np.array(outputs[1]).squeeze()
    output_3 = np.array(outputs[2]).squeeze()

    #生成anchor  ,  人脸框关键点解码
    anchors = Anchors(cfg_mnet, image_size=(640, 640)).get_anchors()
    print(anchors)
    boxes = decode(output_1, anchors, cfg_mnet['variance'])
    print(boxes)
    landms = decode_landm(output_3, anchors, cfg_mnet['variance'])
    print(landms)
    conf = output_2[:, 1:2]
    #非极大抑制,得到最终输出
    boxs_conf = np.concatenate((boxes, conf, landms), -1)
    boxs_conf = filter_box(boxs_conf, 0.5, 0.45)
    #画出人类框和5个人脸关键并保存图片
    if boxs_conf is not None:
        draw_img(boxs_conf, or_img)
        print(img)
        cv2.imwrite("dog1.jpg",or_img)
    # cv2.imshow('re', or_img)
    # cv2.waitKey(0)
    rknn.release()

测试结果

52、人脸检测部署RK3399 PRO,完成RKNN的人脸检测_第2张图片

c++代码

cmakelists.txt

cmake_minimum_required(VERSION 3.16)
project(retainface_rknn)
set(CMAKE_CXX_FLAGS "-std=c++11")
set(CMAKE_CXX_STANDARD 11)

include_directories(${CMAKE_SOURCE_DIR})
include_directories(${CMAKE_SOURCE_DIR}/include)
find_package(OpenCV REQUIRED)
#message(STATUS ${OpenCV_INCLUDE_DIRS})
#添加头文件
include_directories(${OpenCV_INCLUDE_DIRS})
#链接Opencv库
add_library(librknn_api SHARED IMPORTED)
set_target_properties(librknn_api PROPERTIES IMPORTED_LOCATION ${CMAKE_SOURCE_DIR}/lib/librknn_api.so)


add_executable(retainface_rknn main.cpp)
target_link_libraries(retainface_rknn ${OpenCV_LIBS} librknn_api )

main.cpp

#include 
#include 
#include 
#include 
#include "rknn_api.h"
#include "opencv2/core/core.hpp"
#include "opencv2/imgproc/imgproc.hpp"
#include "opencv2/highgui/highgui.hpp"
#include 
using namespace cv;
using namespace std;
struct FaceObject {
    cv::Rect_ rect;
    cv::Point landmark[5];
    float prob;
};

struct Anchor{
    float cx;
    float cy;
    float s_kx;
    float s_ky;
};
void printRKNNTensor(rknn_tensor_attr *attr) {
    printf("index=%d name=%s n_dims=%d dims=[%d %d %d %d] n_elems=%d size=%d "
           "fmt=%d type=%d qnt_type=%d fl=%d zp=%d scale=%f\n",
           attr->index, attr->name, attr->n_dims, attr->dims[3], attr->dims[2],
           attr->dims[1], attr->dims[0], attr->n_elems, attr->size, 0, attr->type,
           attr->qnt_type, attr->fl, attr->zp, attr->scale);
}
void decode(float *loc,float *land_mark,vector &Anchors, float *out_loc, float *out_landmark,int width, int height) {
    float variance[2] = {0.1,0.2};
    for (int q=0; q<1; q++) {
        for (int y=0; y<16800; y++) {
            out_loc[y*4] = Anchors[y].cx + loc[0]*variance[0]*Anchors[y].s_kx;
            out_loc[y*4+1] = Anchors[y].cy + loc[1]*variance[0]*Anchors[y].s_ky;

            out_loc[y*4+2] = (Anchors[y].s_kx*exp(loc[2]*variance[1]))*width;  //width
            out_loc[y*4+3] = (Anchors[y].s_ky*exp(loc[3]*variance[1]))*height;  //height
            out_loc[y*4] = out_loc[y*4]*width - out_loc[y*4+2]/2;          //x0
            out_loc[y*4+1] = out_loc[y*4+1]*height - out_loc[y*4+3]/2;      //y0
            loc += 4;

            out_landmark[y*10] = Anchors[y].cx + land_mark[0]*variance[0]*Anchors[y].s_kx;
            out_landmark[y*10+1] = Anchors[y].cy + land_mark[1]*variance[0]*Anchors[y].s_ky;

            out_landmark[y*10+2] = Anchors[y].cx + land_mark[2]*variance[0]*Anchors[y].s_kx;
            out_landmark[y*10+3] = Anchors[y].cy + land_mark[3]*variance[0]*Anchors[y].s_ky;

            out_landmark[y*10+4] = Anchors[y].cx + land_mark[4]*variance[0]*Anchors[y].s_kx;
            out_landmark[y*10+5] = Anchors[y].cy + land_mark[5]*variance[0]*Anchors[y].s_ky;

            out_landmark[y*10+6] = Anchors[y].cx + land_mark[6]*variance[0]*Anchors[y].s_kx;
            out_landmark[y*10+7] = Anchors[y].cy + land_mark[7]*variance[0]*Anchors[y].s_ky;

            out_landmark[y*10+8] = Anchors[y].cx + land_mark[8]*variance[0]*Anchors[y].s_kx;
            out_landmark[y*10+9] = Anchors[y].cy + land_mark[9]*variance[0]*Anchors[y].s_ky;
            land_mark+=10;

        }
    }
}
bool FaceLargerScore(FaceObject  a, FaceObject b) {
    if ( a.prob > b.prob) {
        return true;
    } else {
        return false;
    }
}


float intersection_area(const FaceObject& a, const FaceObject& b) {
    cv::Rect_ inter = a.rect & b.rect;
    return inter.area();
}
void nms_sorted_bboxes(const std::vector& faceobjects, std::vector& picked, float nms_threshold) {
    picked.clear();
    const int n = faceobjects.size();
    vector areas(n);
    for (int i = 0; i < n; i++) {
        areas[i] = faceobjects[i].rect.area();
    }
    for (int i = 0; i < n; i++) {
        const FaceObject& a = faceobjects[i];
        int keep = 1;
        for (int j = 0; j < (int)picked.size(); j++) {
            const FaceObject& b = faceobjects[picked[j]];
            // intersection over union
            float inter_area = intersection_area(a, b);
            float union_area = areas[i] + areas[picked[j]] - inter_area;
            //float IoU = inter_area / union_area
            if (inter_area / union_area > nms_threshold)
                keep = 0;
        }
        if (keep)
            picked.push_back(i);
    }

}

int post_process_u8(float *input0,float *input1,float *input2,cv::Mat img,int w,int h,std::vector Anchors_,int long_size,std::vector &faces){
    float *loc_data=input0;
    float *cls_data=input1;
    float *land_mark=input2;
    int length=16800;
    int c=1;
    float conf_=0.7;
    int top_k_=100;
    float *out_loc = new float[length*4];
    float *out_landmark = new float[length*10];
    decode(loc_data, land_mark,Anchors_, out_loc,out_landmark, w, h);

    vector tempfaces;
    //将大于阈值的框存进temfaces,准备下一步的nms
    for (int q=0; q conf_) {
                FaceObject face;
                face.prob = cls_data[2*y+1];
                face.rect.x = out_loc[4*y];
                face.rect.y = out_loc[4*y+1];
                face.rect.width = out_loc[4*y+2];
                face.rect.height = out_loc[4*y+3];
                face.landmark[0].x=out_landmark[10*y]*w;
                face.landmark[0].y=out_landmark[10*y+1]*h;
                face.landmark[1].x=out_landmark[10*y+2]*w;
                face.landmark[1].y=out_landmark[10*y+3]*h;
                face.landmark[2].x=out_landmark[10*y+4]*w;
                face.landmark[2].y=out_landmark[10*y+5]*h;
                face.landmark[3].x=out_landmark[10*y+6]*w;
                face.landmark[3].y=out_landmark[10*y+7]*h;
                face.landmark[4].x=out_landmark[10*y+8]*w;
                face.landmark[4].y=out_landmark[10*y+9]*h;

                tempfaces.push_back(face);
            }
        }
    }
    //根据分数排序,保留top_k
    std::sort(tempfaces.begin(), tempfaces.end(),FaceLargerScore);
    if (tempfaces.size() > top_k_)
        tempfaces.resize(top_k_);

    //执行nms
    std::vector picked;

    nms_sorted_bboxes(tempfaces, picked, 0.4);


    //上面的操作是在640×640的图片上做的(先pad图片到正方形,再resize到640*640)
    //因此下面的操作是将检测框,反映射回到原图像的尺寸
    float scale = long_size*1.0/w; //width_与height_相等

    for (int i = 0; i < picked.size(); i++) {
        FaceObject face = tempfaces[picked[i]];
        //反映射回pad_img
        int real_x = face.rect.x*scale;
        int real_y = face.rect.y*scale;
        int real_width = face.rect.width*scale;
        int real_height = face.rect.height*scale;

        //反映射回实际原图尺寸
        real_x = real_x - (long_size - img.cols)/2;
        real_y = real_y - (long_size - img.rows)/2;

        //如果检测框超出了原始图像的边界,则将检测框拉回边界
        real_x = (real_x > 0) ? real_x :0;
        real_y = (real_y > 0) ? real_y :0;
        real_width = ((real_x + real_width) < img.cols ) ? real_width : (img.cols - real_x);
        real_height = ((real_y + real_height) < img.rows ) ? real_height : (img.rows - real_y);

        face.rect.x = real_x;
        face.rect.y = real_y;
        face.rect.width = real_width;
        face.rect.height = real_height;
        faces.push_back(face);
    }
    delete []out_loc;
    delete []out_landmark;
    return 0;
}
void generate_anchors(int height,int width,vector &Anchors) {
    int steps[3] = {8,16,32};
    int min_sizes[3][2] = {{16,32},{64,128},{256,512}};
    int feature_maps[3][2] = {0};
    for(int i=0;i<3;i++) {
        feature_maps[i][0] = ceil(height*1.0/steps[i]);
        feature_maps[i][1] = ceil(width*1.0/steps[i]);
    }
    Anchors.clear();
    for(int i=0;i<3;i++) {
        int *min_size =  min_sizes[i];
        for(int id_y=0;id_y Anchors_;
    vector faces;
    generate_anchors(target_width,target_height,Anchors_);
    // Load image
    cv::Mat bgr = cv::imread(img_path);
    if (!bgr.data) {
        printf("cv::imread %s fail!\n", img_path);
        return -1;
    }
    //BGR->RGB
    //cv::cvtColor(rgb, bgr, cv::COLOR_BGR2RGB);

    cv::Mat pad_img;
    int long_size = max(bgr.cols,bgr.rows);
    if (long_size == bgr.cols) {
        int top = (long_size - bgr.rows)/2;
        int bottom = long_size - top - bgr.rows;
        cv::copyMakeBorder(bgr,pad_img,top,bottom,0,0,cv::BORDER_CONSTANT,0);
    } else {
        int left = (long_size - bgr.cols)/2;
        int right = long_size - left - bgr.cols;
        cv::copyMakeBorder(bgr,pad_img,0,0,left,right,cv::BORDER_CONSTANT,0);
    }
    //pad为正方形后,再resize为模型的固定输入大小(640,640)
    cv::Mat img_resize;
    cv::resize(pad_img,img_resize,cv::Size(target_width,target_height));



    // Load model
    FILE *fp = fopen(model_path, "rb");
    if (fp == NULL) {
        printf("fopen %s fail!\n", model_path);
        return -1;
    }
    fseek(fp, 0, SEEK_END);
    int model_len = ftell(fp);
    void *model = malloc(model_len);
    fseek(fp, 0, SEEK_SET);
    if (model_len != fread(model, 1, model_len, fp)) {
        printf("fread %s fail!\n", model_path);
        free(model);
        return -1;
    }


    rknn_context ctx = 0;

    int ret = rknn_init(&ctx, model, model_len, 0);
    if (ret < 0) {
        printf("rknn_init fail! ret=%d\n", ret);
        return -1;
    }

    /* Query sdk version */
    rknn_sdk_version version;
    ret = rknn_query(ctx, RKNN_QUERY_SDK_VERSION, &version,
                     sizeof(rknn_sdk_version));
    if (ret < 0) {
        printf("rknn_init error ret=%d\n", ret);
        return -1;
    }
    printf("sdk version: %s driver version: %s\n", version.api_version,
           version.drv_version);


    /* Get input,output attr */
    rknn_input_output_num io_num;
    ret = rknn_query(ctx, RKNN_QUERY_IN_OUT_NUM, &io_num, sizeof(io_num));
    if (ret < 0) {
        printf("rknn_init error ret=%d\n", ret);
        return -1;
    }
    printf("model input num: %d, output num: %d\n", io_num.n_input,
           io_num.n_output);

    rknn_tensor_attr input_attrs[io_num.n_input];
    memset(input_attrs, 0, sizeof(input_attrs));
    for (int i = 0; i < io_num.n_input; i++) {
        input_attrs[i].index = i;
        ret = rknn_query(ctx, RKNN_QUERY_INPUT_ATTR, &(input_attrs[i]),
                         sizeof(rknn_tensor_attr));
        if (ret < 0) {
            printf("rknn_init error ret=%d\n", ret);
            return -1;
        }
        printRKNNTensor(&(input_attrs[i]));
    }

    rknn_tensor_attr output_attrs[io_num.n_output];
    memset(output_attrs, 0, sizeof(output_attrs));
    for (int i = 0; i < io_num.n_output; i++) {
        output_attrs[i].index = i;
        ret = rknn_query(ctx, RKNN_QUERY_OUTPUT_ATTR, &(output_attrs[i]),
                         sizeof(rknn_tensor_attr));
        printRKNNTensor(&(output_attrs[i]));
    }

    int input_channel = 3;
    int input_width = 0;
    int input_height = 0;
    if (input_attrs[0].fmt == RKNN_TENSOR_NCHW) {
        printf("model is NCHW input fmt\n");
        input_width = input_attrs[0].dims[0];
        input_height = input_attrs[0].dims[1];
        printf("input_width=%d input_height=%d\n", input_width, input_height);
    } else {
        printf("model is NHWC input fmt\n");
        input_width = input_attrs[0].dims[1];
        input_height = input_attrs[0].dims[2];
        printf("input_width=%d input_height=%d\n", input_width, input_height);
    }

    printf("model input height=%d, width=%d, channel=%d\n", input_height, input_width,
           input_channel);


/* Init input tensor */
    rknn_input inputs[1];
    memset(inputs, 0, sizeof(inputs));
    inputs[0].index = 0;
    inputs[0].buf = img_resize.data;
    inputs[0].type = RKNN_TENSOR_UINT8;
    inputs[0].size = input_width * input_height * input_channel;
    inputs[0].fmt = RKNN_TENSOR_NHWC;
    inputs[0].pass_through = 0;

    /* Init output tensor */
    rknn_output outputs[io_num.n_output];
    memset(outputs, 0, sizeof(outputs));
    for (int i = 0; i < io_num.n_output; i++) {
        outputs[i].want_float = 1;
    }
    printf("img.cols: %d, img.rows: %d\n", img_resize.cols, img_resize.rows);
    auto t1=std::chrono::steady_clock::now();
    rknn_inputs_set(ctx, io_num.n_input, inputs);
    ret = rknn_run(ctx, NULL);
    if (ret < 0) {
        printf("ctx error ret=%d\n", ret);
        return -1;
    }
    ret = rknn_outputs_get(ctx, io_num.n_output, outputs, NULL);
    if (ret < 0) {
        printf("outputs error ret=%d\n", ret);
        return -1;
    }
    /* Post process */
    std::vector out_scales;
    std::vector out_zps;
    for (int i = 0; i < io_num.n_output; ++i) {
        out_scales.push_back(output_attrs[i].scale);
        out_zps.push_back(output_attrs[i].zp);
    }

    if (strcmp(post_process_type, "fp") == 0) {
        post_process_u8((float *) outputs[0].buf,(float *) outputs[1].buf,(float*) outputs[2].buf,img_resize,
                        target_height, target_width,Anchors_, long_size,faces);
    }
//毫秒级
    auto t2=std::chrono::steady_clock::now();
    double dr_ms=std::chrono::duration(t2-t1).count();
    printf("%lf ms\n",dr_ms);


    for(auto &face:faces){
        cv::rectangle(img_resize, cv::Point(face.rect.x, face.rect.y),
                      cv::Point(face.rect.x + face.rect.width, face.rect.y + face.rect.height),
                      cv::Scalar(0, 255, 0), 2);
        string score = to_string(face.prob);
        cv::putText(img_resize, score, cv::Point(face.rect.x, face.rect.y),cv::FONT_HERSHEY_DUPLEX, 0.6, (0, 255, 255));
        cv::circle(img_resize, face.landmark[0], 2, cv::Scalar(0, 0, 255), -1);
        cv::circle(img_resize, face.landmark[1], 2, cv::Scalar(0, 0, 255), -1);
        cv::circle(img_resize, face.landmark[2], 2, cv::Scalar(0, 0, 255), -1);
        cv::circle(img_resize, face.landmark[3], 2, cv::Scalar(0, 0, 255), -1);
        cv::circle(img_resize, face.landmark[4], 2, cv::Scalar(0, 0, 255), -1);
    }
    cv::imwrite("../image.jpg",img_resize);
    cv::waitKey(0);


    ret = rknn_outputs_release(ctx, io_num.n_output, outputs);

    if (ret < 0) {
        printf("rknn_query fail! ret=%d\n", ret);
        goto Error;
    }


    Error:
    if (ctx > 0)
        rknn_destroy(ctx);
    if (model)
        free(model);
    if (fp)
        fclose(fp);
    return 0;
}

运行数据

/tmp/tmp.q0kaCsDGvt/cmake-build-debug/untitled10
D RKNNAPI: ==============================================
D RKNNAPI: RKNN VERSION:
D RKNNAPI:   API: 1.6.1 (00c4d8b build: 2021-03-15 16:31:37)
D RKNNAPI:   DRV: 1.7.1 (0cfd4a1 build: 2021-12-10 09:43:11)
D RKNNAPI: ==============================================
sdk version: 1.6.1 (00c4d8b build: 2021-03-15 16:31:37) driver version: 1.7.1 (0cfd4a1 build: 2021-12-10 09:43:11)
model input num: 1, output num: 3
index=0 name=input0_129 n_dims=4 dims=[1 3 640 640] n_elems=1228800 size=1228800 fmt=0 type=3 qnt_type=2 fl=0 zp=0 scale=1.000000
index=0 name=Concat_Concat_130/out0_0 n_dims=3 dims=[0 1 16800 4] n_elems=67200 size=67200 fmt=0 type=3 qnt_type=2 fl=0 zp=130 scale=0.040004
index=1 name=Softmax_Softmax_171/out0_1 n_dims=3 dims=[0 1 16800 2] n_elems=33600 size=67200 fmt=0 type=1 qnt_type=0 fl=0 zp=0 scale=1.000000
index=2 name=Concat_Concat_170/out0_2 n_dims=3 dims=[0 1 16800 10] n_elems=168000 size=168000 fmt=0 type=3 qnt_type=2 fl=0 zp=122 scale=0.086914
model is NCHW input fmt
input_width=640 input_height=640
model input height=640, width=640, channel=3
img.cols: 640, img.rows: 640
79.234952 ms

Process finished with exit code 0

测试结果

52、人脸检测部署RK3399 PRO,完成RKNN的人脸检测_第3张图片

 

参考:

GitHub - OpenFirework/Retinaface_CPP: Retinaface人脸检测网络 MNN、NCNN嵌入式,Linux端推理源码,包含一个卡通人脸检测的模型,脚本一键构建可执行程序

你可能感兴趣的:(硬件的基本知识,opencv,计算机视觉,c++)