- 李宏毅机器学习笔记——反向传播算法
小陈phd
机器学习机器学习算法神经网络
反向传播算法反向传播(Backpropagation)是一种用于训练人工神经网络的算法,它通过计算损失函数相对于网络中每个参数的梯度来更新这些参数,从而最小化损失函数。反向传播是深度学习中最重要的算法之一,通常与梯度下降等优化算法结合使用。反向传播的基本原理反向传播的核心思想是利用链式法则(ChainRule)来高效地计算损失函数相对于每个参数的梯度。以下是反向传播的基本步骤:前向传播(Forwa
- 机器学习第二十五周周报 ConvLSTM
沽漓酒江
机器学习人工智能
文章目录week25ConvLSTM摘要Abstract一、李宏毅机器学习二、文献阅读1.题目2.abstract3.网络架构3.1降水预报问题的建模3.2ConvolutionalLSTM3.3编码-预测结构4.文献解读4.1Introduction4.2创新点4.3实验过程4.3.1Moving-MNISTDataset4.3.2雷达回波数据集4.4结论三、基于pytorch实现ConvLST
- 李宏毅机器学习——回归实验
migugu
importnumpyasnpimportmatplotlib.pyplotaspltfrompylabimportmpl#matplotlib没有中文字体,动态解决plt.rcParams['font.sans-serif']=['Simhei']#显示中文mpl.rcParams['axes.unicode_minus']=False#解决保存图像是负号'-'显示为方块的问题x_data=[3
- 李宏毅机器学习笔记 2.回归
Simone Zeng
机器学习机器学习
最近在跟着Datawhale组队学习打卡,学习李宏毅的机器学习/深度学习的课程。课程视频:https://www.bilibili.com/video/BV1Ht411g7Ef开源内容:https://github.com/datawhalechina/leeml-notes本篇文章对应视频中的P3。另外,最近我也在学习邱锡鹏教授的《神经网络与深度学习》,会补充书上的一点内容。通过上一次课1.机器
- 李宏毅机器学习(二十)无监督学习Neighbor Embedding近邻嵌入
ca8519be679b
ManifoldLearning我们有时候的特征其实是低维度的放到高纬度上去,比如地球表面是2维的,但是被放到了3维空间,比如左下的S曲面,其实可以展开到2维平面上去,接下来就方便我们进一步计算分类等等插图1我们有如下几个降维方法LocallyLinearEmedding(LLE)局部线性嵌入具体是是怎么做的呢,我们点x和周围的点xj,给xj每个点加权wij求和,使其和xi最接近,然后投影到向量z
- 李宏毅pm2.5作业【转载】
言糙
pythonnumpy机器学习
李宏毅机器学习PM2.5作业使用pyCharm2022.2.1版本,python10.0python也不会,计算机也不会,啥都不会,只带了个脑子考了计算机研究生。研究生选了人工智能方向。看来注定是漫长的学习之旅。PM2.5作业,我是一个字都看不懂。所以我采用了直接看答案的方案。把答案看懂也是一种本事。把答案CV上来。文章目录前言一、pandas是什么?二、使用步骤1.引入库2.提取TEST数据集3
- Python 学习工具及资源
Lanlan_78d1
小甲鱼Python基础学习到P19(函数)之前image.png菜鸟语法查询Anaconda安装教学Jupyter教学*李宏毅机器学习
- Transformer 代码补充
Karen_Yu_
python深度学习pytorchtransformer
本文是对Transformer-Attentionisallyouneed论文阅读-CSDN博客以及【李宏毅机器学习】Transformer内容补充-CSDN博客的补充,是对相关代码的理解。先说个题外话,在之前李宏毅老师的课程中提到multi-headattention是把得到的qkv分别乘上不同的矩阵,得到更多的qkv。实际上,这里采用的方法是直接截取,比如这里有两个头,那么q^i就被分成两部分
- 【李宏毅机器学习】Transformer 内容补充
Karen_Yu_
自然语言处理人工智能transformer
视频来源:10.【李宏毅机器学习2021】自注意力机制(Self-attention)(上)_哔哩哔哩_bilibili发现一个奇怪的地方,如果直接看ML/DL的课程的话,有很多都是不完整的。开始思考是不是要科学上网。本文用作Transformer-Attentionisallyouneed论文阅读-CSDN博客的补充内容,因为发现如果实操还是有不能理解的地方,所以准备看看宝可梦老师怎么说×Sel
- 【LLM | 基础知识】自注意力机制 Self-attention [李宏毅机器学习]
XMUJason
大语言模型LLMchatgpt笔记nlp
⭐引言本文主要参考李宏毅老师对于自注意力机制的讲解内容,但在此基础之上进行了一定的补充和删减,文中大部分插图来源于李宏毅老师的课件。本文的主要目的是梳理清楚自注意力机制的基本原理,理解什么是自注意力机制,不关注代码实现和具体的数学运算。本文尽可能把内容只控制在自注意力机制的基本框架上,不进行过多的相关概念的扩展,以免被其他相关内容转移注意力。1.从“单向量输入”到“多向量输入”在之前的机器学习方法
- 李宏毅机器学习(二十三)无监督学习Deep Generative Model(二)
ca8519be679b
内容衔接上一讲,上节我们讲到VAE,我们为什么用VAE而不用auto-encoder呢,直觉上的原因是如果是auto-encoder,我们期待的是输入满月解码后还是满月,输入半月输出还是半月,但是我们能保证中间状态时候我们的输出是3/4月吗,结果往往不是;如果是VAE,我们就会引入一定的噪声,使得一定范围内输出都是满月,一定范围内输出都是半月,中间的公共部分由于我们要Minimize2者的误差,所
- 李宏毅机器学习——深度学习训练的技巧
migugu
神经网络训练的技巧优化失败的原因:局部最小值或鞍点,可以通过对H矩阵特征值正负性进行判断batch:加快梯度的计算,更新参数的速度比较快momentum:越过局部最小值或鞍点learningrate:自动调整学习率如RMSProp等normalizationdropout
- 李宏毅机器学习——初识深度学习
migugu
深度学习简介深度学习的历史1958:Perceptron(linearmodel)1969:Perceptronhaslimitation1980s:Multi-layerperceptronDonothavesignificantdifferencefromDNNtoday1986:BackpropagationUsuallymorethan3hiddenlayersisnothelpful19
- 李宏毅机器学习第一周_初识机器学习
Nyctophiliaa
机器学习人工智能深度学习
目录摘要一、机器学习基本概念1、MachineLearning≈LookingforFunction2、认识一些专有名词二、预测YouTube某天的浏览量一、利用Linearmodel二、定义更复杂的函数表达式三、ReLU函数四、Sigmoid函数与ReLU函数的对比三、反向传播(Backpropagation)一、反向传播的基本思想(正向计算-误差计算-梯度计算-参数更新)二、计算过程总结摘要在
- 李宏毅机器学习_卷积神经网络(CNN)
Nyctophiliaa
机器学习cnn深度学习
目录摘要Abstract一、什么是CNN二、ImageClassification三、Observation1一、Simplification1四、Observation2五、BenefitofConvolutionalLayer六、ConvolutionalLayer七、MultipleConvolutionalLayers八、ComparisonofTwoStories九、Observatio
- 李宏毅机器学习第十六周周报NAT&HW5
沽漓酒江
机器学习人工智能
文章目录week16Non-autoregressiveSequenceGeneration摘要Abstract一、李宏毅机器学习Non-autoregressiveSequenceGeneration1.问题阐述1.1Autoregressivemodel1.2Non-autoregressivemodel(mostlybyTransformer)2.Solution2.1VanillaNAT(
- 2023春季李宏毅机器学习笔记 02 :机器学习基本概念
女王の专属领地
机器学习深度学习#李宏毅2023机器学习机器学习笔记人工智能
资料课程主页:https://speech.ee.ntu.edu.tw/~hylee/ml/2023-spring.phpGithub:https://github.com/Fafa-DL/Lhy_Machine_LearningB站课程:https://space.bilibili.com/253734135/channel/collectiondetail?sid=2014800一、機器學習基
- 2023春季李宏毅机器学习笔记 03 :机器如何生成文句
女王の专属领地
#李宏毅2023机器学习机器学习深度学习笔记机器学习人工智能深度学习
资料课程主页:https://speech.ee.ntu.edu.tw/~hylee/ml/2023-spring.phpGithub:https://github.com/Fafa-DL/Lhy_Machine_LearningB站课程:https://space.bilibili.com/253734135/channel/collectiondetail?sid=2014800一、大语言模型
- Chat GPT4来了,它和3.5区别在哪?李宏毅机器学习笔记
抱抱小杠杠
机器学习人工智能笔记
听说GPT4模型更大、参数更多,功能更强,具体它好在哪里?GPT4真的能看懂图片吗?官方回答:不太能~~下面这张图片是将两个不存在的网址输入进GPT4,问它看到了什么,结果发现GPT真的会胡言乱语,它会根据网址中出现了“man”这个单词,就说他看到了“一个拿着手枪的男人。。。巴拉巴拉”明显就是在胡编乱造!而如果网址中出现了“girl”这个单词,GPT又会说他看到了“一个穿着校服的女孩子。。。巴拉巴
- 李宏毅机器学习-PCA
Zhuanshan_
机器学习人工智能
视频链接:李宏毅2020机器学习深度学习(完整版)国语用最直观的方式告诉你:什么是主成分分析PCA【中字】主成分分析法(PCA)|分步步骤解析看完你就懂了!无监督学习做什么无监督学习主要做两件事情:聚类&降维:比如说下图的树木,只有输入图片,没有标签,我们希望通过一个函数抽象的表达他们,于是抽出一个更抽象的表述生成器:也就是无中生有,我们有很多图片,但不知道是怎么生成的,于是需要一个好的函数,将刚
- 2023春季李宏毅机器学习笔记 05 :机器如何生成图像
女王の专属领地
#李宏毅2023机器学习机器学习笔记人工智能机器学习李宏毅AI产品
资料课程主页:https://speech.ee.ntu.edu.tw/~hylee/ml/2023-spring.phpGithub:https://github.com/Fafa-DL/Lhy_Machine_LearningB站课程:https://space.bilibili.com/253734135/channel/collectiondetail?sid=2014800一、图像生成常
- 李宏毅机器学习第二十二周周报GAN理论2
沽漓酒江
机器学习生成对抗网络人工智能
文章目录week22TheorybehindGAN2摘要Abstract一、李宏毅机器学习0.上周内容概述1.GAN的训练过程2.生成器与分辨器的算法细节3.整体算法描述4.原文中生成器目标函数的实现方式二、文献阅读1.题目2.abstract3.网络架构3.1无数据生成方法3.2Data-EnrichingGAN(DeGAN)4.文献解读4.1Introduction4.2创新点4.3实验过程4
- 李宏毅机器学习第二十周周报GAN4
沽漓酒江
机器学习人工智能
文章目录week20GAN4摘要Abstract一、李宏毅机器学习——GAN41.LearningfromUnpairedData2.CycleGAN3.Application二、文献阅读1.题目2.abstract3.网络架构3.1损失函数3.1.1对抗性损失3.1.2循环一致性损失3.1.3整体目标3.1.4identityloss3.2网络结构3.3训练细节3.4网络架构3.4.1生成器部分
- 李宏毅机器学习第二十一周周报GAN理论
沽漓酒江
机器学习生成对抗网络人工智能
文章目录week21TheorybehindGAN摘要Abstract一、李宏毅机器学习——TheorybehindGAN1.Generation2.最大似然估计3.Generator3.Discriminator二、文献阅读1.题目2.abstract3.网络架构3.1SequenceGenerativeAdversarialNets3.2SeqGANviaPolicyGradient3.3Th
- 李宏毅机器学习第十八周周报GAN2
沽漓酒江
机器学习人工智能
文章目录week18GAN2摘要Abstract一、TheorybehindGAN1.训练目的2.Wassersteindistance二、文献阅读1.题目2.abstract3.网络架构3.1WassersteinDistance3.2WasserteinGANs3.3Gradientpenalty4.文献解读4.1Introduction4.2创新点4.3实验过程4.3.1Difficulti
- 李宏毅机器学习第十九周周报GAN3
沽漓酒江
机器学习人工智能gan
文章目录week19GAN3摘要Abstract一、李宏毅机器学习——GAN31.Introduce2.DifficultyinGANtraining3.EvaluationofGeneration4.ConditionalGeneration二、文献阅读1.题目2.abstract3.文章主要内容3.1基于GANs的双时间尺度更新规则3.2Adam确保TTUR收敛3.2.1使用Adam以降低收敛
- 李宏毅机器学习第二十三周周报 Flow-based model
沽漓酒江
机器学习人工智能生成对抗网络
文章目录week23Flow-basedmodel摘要Abstract一、李宏毅机器学习1.引言2.数学背景2.1Jacobian2.2Determinant2.3ChangeofVariableTheorem3.Flow-basedModel4.GLOW二、文献阅读1.题目2.abstract3.网络架构3.1changeofvariableformula3.2Couplinglayers3.3
- 李宏毅机器学习(十八)无监督学习-线性模型
ca8519be679b
UnsupervisedLearning-LinearModel无监督学习我们大致分为2种情况,聚类和无中生有化繁为简,比如呢,我们有许多个树的图片,我们经过函数输出为一个结果,另一种是我们已知一个数据code,根据不同的code输入,通过函数实现输出不同的图片插图1聚类很容易理解,比如我们有猫狗鸟3种图片,通过分析相似性,将图片分为K种,但问题常常就是K取多少,比如我们有9个图片,我们分9种和分
- 2023春季李宏毅机器学习笔记01 :正确认识 ChatGPT
女王の专属领地
深度学习机器学习机器学习李宏毅人工智能AI产品
资料课程主页:https://speech.ee.ntu.edu.tw/~hylee/ml/2023-spring.phpGithub:https://github.com/Fafa-DL/Lhy_Machine_LearningB站课程:https://space.bilibili.com/253734135/channel/collectiondetail?sid=2014800一、对Chat
- Self-attention学习笔记(Self Attention、multi-head self attention)
shuyeah
学习笔记
李宏毅机器学习TransformerSelfAttention学习笔记记录一下几个方面的内容1、SelfAttention解决了什么问题2、SelfAttention的实现方法以及网络结构Multi-headSelfAttentionpositionalencoding3、SelfAttention方法的应用4、SelfAttention与CNN以及RNN对比1、SelfAttention解决了什
- 枚举的构造函数中抛出异常会怎样
bylijinnan
javaenum单例
首先从使用enum实现单例说起。
为什么要用enum来实现单例?
这篇文章(
http://javarevisited.blogspot.sg/2012/07/why-enum-singleton-are-better-in-java.html)阐述了三个理由:
1.enum单例简单、容易,只需几行代码:
public enum Singleton {
INSTANCE;
- CMake 教程
aigo
C++
转自:http://xiang.lf.blog.163.com/blog/static/127733322201481114456136/
CMake是一个跨平台的程序构建工具,比如起自己编写Makefile方便很多。
介绍:http://baike.baidu.com/view/1126160.htm
本文件不介绍CMake的基本语法,下面是篇不错的入门教程:
http:
- cvc-complex-type.2.3: Element 'beans' cannot have character
Cb123456
springWebgis
cvc-complex-type.2.3: Element 'beans' cannot have character
Line 33 in XML document from ServletContext resource [/WEB-INF/backend-servlet.xml] is i
- jquery实例:随页面滚动条滚动而自动加载内容
120153216
jquery
<script language="javascript">
$(function (){
var i = 4;$(window).bind("scroll", function (event){
//滚动条到网页头部的 高度,兼容ie,ff,chrome
var top = document.documentElement.s
- 将数据库中的数据转换成dbs文件
何必如此
sqldbs
旗正规则引擎通过数据库配置器(DataBuilder)来管理数据库,无论是Oracle,还是其他主流的数据都支持,操作方式是一样的。旗正规则引擎的数据库配置器是用于编辑数据库结构信息以及管理数据库表数据,并且可以执行SQL 语句,主要功能如下。
1)数据库生成表结构信息:
主要生成数据库配置文件(.conf文
- 在IBATIS中配置SQL语句的IN方式
357029540
ibatis
在使用IBATIS进行SQL语句配置查询时,我们一定会遇到通过IN查询的地方,在使用IN查询时我们可以有两种方式进行配置参数:String和List。具体使用方式如下:
1.String:定义一个String的参数userIds,把这个参数传入IBATIS的sql配置文件,sql语句就可以这样写:
<select id="getForms" param
- Spring3 MVC 笔记(一)
7454103
springmvcbeanRESTJSF
自从 MVC 这个概念提出来之后 struts1.X struts2.X jsf 。。。。。
这个view 层的技术一个接一个! 都用过!不敢说哪个绝对的强悍!
要看业务,和整体的设计!
最近公司要求开发个新系统!
- Timer与Spring Quartz 定时执行程序
darkranger
springbean工作quartz
有时候需要定时触发某一项任务。其实在jdk1.3,java sdk就通过java.util.Timer提供相应的功能。一个简单的例子说明如何使用,很简单: 1、第一步,我们需要建立一项任务,我们的任务需要继承java.util.TimerTask package com.test; import java.text.SimpleDateFormat; import java.util.Date;
- 大端小端转换,le32_to_cpu 和cpu_to_le32
aijuans
C语言相关
大端小端转换,le32_to_cpu 和cpu_to_le32 字节序
http://oss.org.cn/kernel-book/ldd3/ch11s04.html
小心不要假设字节序. PC 存储多字节值是低字节为先(小端为先, 因此是小端), 一些高级的平台以另一种方式(大端)
- Nginx负载均衡配置实例详解
avords
[导读] 负载均衡是我们大流量网站要做的一个东西,下面我来给大家介绍在Nginx服务器上进行负载均衡配置方法,希望对有需要的同学有所帮助哦。负载均衡先来简单了解一下什么是负载均衡,单从字面上的意思来理解就可以解 负载均衡是我们大流量网站要做的一个东西,下面我来给大家介绍在Nginx服务器上进行负载均衡配置方法,希望对有需要的同学有所帮助哦。
负载均衡
先来简单了解一下什么是负载均衡
- 乱说的
houxinyou
框架敏捷开发软件测试
从很久以前,大家就研究框架,开发方法,软件工程,好多!反正我是搞不明白!
这两天看好多人研究敏捷模型,瀑布模型!也没太搞明白.
不过感觉和程序开发语言差不多,
瀑布就是顺序,敏捷就是循环.
瀑布就是需求、分析、设计、编码、测试一步一步走下来。而敏捷就是按摸块或者说迭代做个循环,第个循环中也一样是需求、分析、设计、编码、测试一步一步走下来。
也可以把软件开发理
- 欣赏的价值——一个小故事
bijian1013
有效辅导欣赏欣赏的价值
第一次参加家长会,幼儿园的老师说:"您的儿子有多动症,在板凳上连三分钟都坐不了,你最好带他去医院看一看。" 回家的路上,儿子问她老师都说了些什么,她鼻子一酸,差点流下泪来。因为全班30位小朋友,惟有他表现最差;惟有对他,老师表现出不屑,然而她还在告诉她的儿子:"老师表扬你了,说宝宝原来在板凳上坐不了一分钟,现在能坐三分钟。其他妈妈都非常羡慕妈妈,因为全班只有宝宝
- 包冲突问题的解决方法
bingyingao
eclipsemavenexclusions包冲突
包冲突是开发过程中很常见的问题:
其表现有:
1.明明在eclipse中能够索引到某个类,运行时却报出找不到类。
2.明明在eclipse中能够索引到某个类的方法,运行时却报出找不到方法。
3.类及方法都有,以正确编译成了.class文件,在本机跑的好好的,发到测试或者正式环境就
抛如下异常:
java.lang.NoClassDefFoundError: Could not in
- 【Spark七十五】Spark Streaming整合Flume-NG三之接入log4j
bit1129
Stream
先来一段废话:
实际工作中,业务系统的日志基本上是使用Log4j写入到日志文件中的,问题的关键之处在于业务日志的格式混乱,这给对日志文件中的日志进行统计分析带来了极大的困难,或者说,基本上无法进行分析,每个人写日志的习惯不同,导致日志行的格式五花八门,最后只能通过grep来查找特定的关键词缩小范围,但是在集群环境下,每个机器去grep一遍,分析一遍,这个效率如何可想之二,大好光阴都浪费在这上面了
- sudoku solver in Haskell
bookjovi
sudokuhaskell
这几天没太多的事做,想着用函数式语言来写点实用的程序,像fib和prime之类的就不想提了(就一行代码的事),写什么程序呢?在网上闲逛时发现sudoku游戏,sudoku十几年前就知道了,学生生涯时也想过用C/Java来实现个智能求解,但到最后往往没写成,主要是用C/Java写的话会很麻烦。
现在写程序,本人总是有一种思维惯性,总是想把程序写的更紧凑,更精致,代码行数最少,所以现
- java apache ftpClient
bro_feng
java
最近使用apache的ftpclient插件实现ftp下载,遇见几个问题,做如下总结。
1. 上传阻塞,一连串的上传,其中一个就阻塞了,或是用storeFile上传时返回false。查了点资料,说是FTP有主动模式和被动模式。将传出模式修改为被动模式ftp.enterLocalPassiveMode();然后就好了。
看了网上相关介绍,对主动模式和被动模式区别还是比较的模糊,不太了解被动模
- 读《研磨设计模式》-代码笔记-工厂方法模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
package design.pattern;
/*
* 工厂方法模式:使一个类的实例化延迟到子类
* 某次,我在工作不知不觉中就用到了工厂方法模式(称为模板方法模式更恰当。2012-10-29):
* 有很多不同的产品,它
- 面试记录语
chenyu19891124
招聘
或许真的在一个平台上成长成什么样,都必须靠自己去努力。有了好的平台让自己展示,就该好好努力。今天是自己单独一次去面试别人,感觉有点小紧张,说话有点打结。在面试完后写面试情况表,下笔真的好难,尤其是要对面试人的情况说明真的好难。
今天面试的是自己同事的同事,现在的这个同事要离职了,介绍了我现在这位同事以前的同事来面试。今天这位求职者面试的是配置管理,期初看了简历觉得应该很适合做配置管理,但是今天面
- Fire Workflow 1.0正式版终于发布了
comsci
工作workflowGoogle
Fire Workflow 是国内另外一款开源工作流,作者是著名的非也同志,哈哈....
官方网站是 http://www.fireflow.org
经过大家努力,Fire Workflow 1.0正式版终于发布了
正式版主要变化:
1、增加IWorkItem.jumpToEx(...)方法,取消了当前环节和目标环节必须在同一条执行线的限制,使得自由流更加自由
2、增加IT
- Python向脚本传参
daizj
python脚本传参
如果想对python脚本传参数,python中对应的argc, argv(c语言的命令行参数)是什么呢?
需要模块:sys
参数个数:len(sys.argv)
脚本名: sys.argv[0]
参数1: sys.argv[1]
参数2: sys.argv[
- 管理用户分组的命令gpasswd
dongwei_6688
passwd
NAME: gpasswd - administer the /etc/group file
SYNOPSIS:
gpasswd group
gpasswd -a user group
gpasswd -d user group
gpasswd -R group
gpasswd -r group
gpasswd [-A user,...] [-M user,...] g
- 郝斌老师数据结构课程笔记
dcj3sjt126com
数据结构与算法
<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
- yii2 cgridview加上选择框进行操作
dcj3sjt126com
GridView
页面代码
<?=Html::beginForm(['controller/bulk'],'post');?>
<?=Html::dropDownList('action','',[''=>'Mark selected as: ','c'=>'Confirmed','nc'=>'No Confirmed'],['class'=>'dropdown',])
- linux mysql
fypop
linux
enquiry mysql version in centos linux
yum list installed | grep mysql
yum -y remove mysql-libs.x86_64
enquiry mysql version in yum repositoryyum list | grep mysql oryum -y list mysql*
install mysq
- Scramble String
hcx2013
String
Given a string s1, we may represent it as a binary tree by partitioning it to two non-empty substrings recursively.
Below is one possible representation of s1 = "great":
- 跟我学Shiro目录贴
jinnianshilongnian
跟我学shiro
历经三个月左右时间,《跟我学Shiro》系列教程已经完结,暂时没有需要补充的内容,因此生成PDF版供大家下载。最近项目比较紧,没有时间解答一些疑问,暂时无法回复一些问题,很抱歉,不过可以加群(334194438/348194195)一起讨论问题。
----广告-----------------------------------------------------
- nginx日志切割并使用flume-ng收集日志
liyonghui160com
nginx的日志文件没有rotate功能。如果你不处理,日志文件将变得越来越大,还好我们可以写一个nginx日志切割脚本来自动切割日志文件。第一步就是重命名日志文件,不用担心重命名后nginx找不到日志文件而丢失日志。在你未重新打开原名字的日志文件前,nginx还是会向你重命名的文件写日志,linux是靠文件描述符而不是文件名定位文件。第二步向nginx主
- Oracle死锁解决方法
pda158
oracle
select p.spid,c.object_name,b.session_id,b.oracle_username,b.os_user_name from v$process p,v$session a, v$locked_object b,all_objects c where p.addr=a.paddr and a.process=b.process and c.object_id=b.
- java之List排序
shiguanghui
list排序
在Java Collection Framework中定义的List实现有Vector,ArrayList和LinkedList。这些集合提供了对对象组的索引访问。他们提供了元素的添加与删除支持。然而,它们并没有内置的元素排序支持。 你能够使用java.util.Collections类中的sort()方法对List元素进行排序。你既可以给方法传递
- servlet单例多线程
utopialxw
单例多线程servlet
转自http://www.cnblogs.com/yjhrem/articles/3160864.html
和 http://blog.chinaunix.net/uid-7374279-id-3687149.html
Servlet 单例多线程
Servlet如何处理多个请求访问?Servlet容器默认是采用单实例多线程的方式处理多个请求的:1.当web服务器启动的