model.py文件:
# -*- coding: utf-8 -*-
# @Author : XZC
# @Time : 2022/12/5 12:14
import torch
from torch import nn
# 搭建神经网络
class XZC(nn.Module):
def __init__(self):
super(XZC, self).__init__()
self.model=nn.Sequential(
# in_channels,out_channels,kernel_size,stride,padding
nn.Conv2d(3,32,5,1,2),
nn.MaxPool2d(2),
nn.Conv2d(32,32,3,1,2),
nn.MaxPool2d(2),
nn.Conv2d(32,64,5,1,2),
nn.MaxPool2d(2),
nn.Flatten(),
nn.Linear(64*4*4,64),
nn.Linear(64,10)
)
def forward(self,x):
x=self.model(x)
return x
if __name__ == '__main__':
xzc=XZC()
input=torch.ones((64,3,32,32))
output=xzc(input)
print(output.shape)
train.py文件:
# -*- coding: utf-8 -*-
# @Author : XZC
# @Time : 2022/12/5 11:49
import torchvision
from torch import nn
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter
from model import *
# 准备数据集
train_data=torchvision.datasets.CIFAR10(root='data',train=True,transform=torchvision.transforms.ToTensor(),
download=True)
test_data=torchvision.datasets.CIFAR10(root='data',train=False,transform=torchvision.transforms.ToTensor(),
download=True)
# length 长度
train_data_size=len(train_data)
test_data_size=len(test_data)
print("训练数据集的长度:{}".format(train_data_size))
print("测试数据集的长度:{}".format(test_data_size))
# 利用DataLoader来加载数据集
train_dataloader=DataLoader(train_data,batch_size=64)
test_dataloader=DataLoader(test_data,batch_size=64)
# 搭建神经网络,model.py文件
# 创建网络模型
xzc=XZC()
# 损失函数
loss_fn=nn.CrossEntropyLoss()
# 优化器
learning_rate=0.01
optimizer=torch.optim.SGD(xzc.parameters(),lr=learning_rate)
# 设置训练网络的一些参数
# 记录训练的次数
total_train_step=0
# 记录测试的次数
total_test_step=0
# 记录训练的轮数
epoch=10
# 添加tensorboard
writer=SummaryWriter("logs_train")
for i in range(epoch):
print("----------第{}轮训练开始----------".format(i+1))
# 训练步骤开始
# xzc.train()
for data in train_dataloader:
imgs,targets=data
outputs=xzc(imgs)
# 计算真实值与目标值之间的误差
loss=loss_fn(outputs,targets)
# 优化器优化模型
optimizer.zero_grad()
loss.backward()
optimizer.step()
total_train_step=total_train_step+1
# loss.item()将值转换成真实数字
if total_train_step%100==0:
print("训练次数:{},loss:{}".format(total_train_step,loss.item()))
writer.add_scalar("train_loss",loss.item(),total_train_step)
# 测试步骤开始
# xzc.eval()
total_test_loss=0
total_accuracy=0
with torch.no_grad():
for data in test_dataloader:
imgs,targets=data
outputs=xzc(imgs)
loss=loss_fn(outputs,targets)
total_test_loss=total_test_loss+loss.item()
accuracy=(outputs.argmax(1)==targets).sum()
total_accuracy=total_accuracy+accuracy
print("整体测试集上的loss:{}".format(total_test_loss))
print("整体测试集上的正确率:{}".format(total_accuracy/test_data_size))
writer.add_scalar("test_loss",total_test_loss,total_test_step)
writer.add_scalar("test_accuracy",total_accuracy/test_data_size,total_test_step)
total_test_step=total_test_step+1
#保存每一轮的模型
torch.save(xzc,"xzc_{}.pth".format(i))
print("模型已保存")
writer.close()