欢迎来到本博客❤️❤️❤️
作者研究:主要研究方向是电力系统和智能算法、机器学习和深度学习。目前熟悉python网页爬虫、机器学习、群智能算法、深度学习的相关内容。希望将计算机和电网有效结合!⭐️⭐️⭐️
博主优势:博客内容尽量做到思维缜密,逻辑清晰,为了方便读者,方便大家进行学习!亲民!!!还有我开了一个专栏给女朋友的,很浪漫的喔,代码学累的时候去瞧一瞧,看一看:女朋友的浪漫邂逅。有问题可以私密博主,博主看到会在第一时间回复。
目前更新:电力系统相关知识,期刊论文,算法,机器学习和人工智能学习。
支持:如果觉得博主的文章还不错或者您用得到的话,可以关注一下博主,如果三连收藏支持就更好啦!这就是给予我最大的支持!博主课外兴趣:中西方哲学,送予读者:
做科研,涉及到一个深在的思想系统,需要科研者逻辑缜密,踏实认真,但是不能只是努力,很多时候借力比努力更重要,然后还要有仰望星空的创新点和启发点。当哲学课上老师问你什么是科学,什么是电的时候,不要觉得这些问题搞笑,哲学就是追究终极问题,寻找那些不言自明只有小孩子会问的但是你却回答不出来的问题。在我这个专栏记录我有空时的一些哲学思考和科研笔记:科研和哲思。建议读者按目录次序逐一浏览,免得骤然跌入幽暗的迷宫找不到来时的路,它不足为你揭示全部问题的答案,但若能让人胸中升起一朵朵疑云,也未尝不会酿成晚霞斑斓的别一番景致,万一它居然给你带来了一场精神世界的苦雨,那就借机洗刷一下原来存放在那儿的“真理”上的尘埃吧。
或许,雨过云收,神驰的天地更清朗.......
本文目录如下:⛳️⛳️⛳️
目录
1 长短期记忆神经网络
1.1 网络介绍
1.2 网络训练
2 基于 LSTM 的分布式能源发电预测matlab仿真结果
3 参考文献
4 Matlab代码实现
VFAP 系统的供暖负荷数据为非线性数据,且具有时间连续性, 处理此类问题首选具有时间
步的循环神经网络 (Recurrent Neural Network,RNN),但随着采集数据量的增加,RNN 在训练时容易出现梯度消失问题, 这就导致过早的数据在训练时容易丢失。 LSTM 作为 RNN 的一种变体,可以解决 RNN 在训练时的梯度消失及梯度爆炸问题, 较多的用于非线性时间按序列的预测中,LSTM 的网络结构如图 5所示。
LSTM 网络结构
网络采用 3 个门控结构, 使隐藏层变为具有记忆功能的细胞。 其记忆功能为:
式中:ft,it,ot,ct 分别为遗忘门、输入门、输出门和记忆细胞状态量;Wfx,Wix,Wox 为输入层 xt 和隐含层 ht 在 t 时刻的关联权重;Wfh,Wih,Woh 为隐含层在 t~t-1 时刻的关联权重;Wfc,Wic,Woc 为细胞在t~t-1 时刻的关联权重;Wcx,Wch 分别为细胞与输入及细胞与隐含层之间的关联权重;bf,bi,bo,bc 为各个门控单元和细胞的偏置量;ht-1 为上一单元细胞的输出量,ht 为 t 时刻细胞的输出值;σ 为 sigmoid 激活函数。
规定输入层数据为 VFAP 供暖系统的多特征量表示为:
LSTM 网络输入层的样本格式 为(samples,steps,features),samples 为每个训练的批次,steps为每次滑动的特征步长,features 为输入参数特征量。 其维度计为 m,设供暖期系统运行数据为 M,时间步长大小为 t,特征个数为 f,则该系统共有M-t 个样本, 基于 LSTM 神经网络的 VFAP 系统负荷预测具体步骤如下。
部分理论引用网络文献,若有侵权请联系博主删除。
[1]胡洋,程志江,崔澜.基于LSTM的变频太阳能-空气源热泵系统逐时负荷预测研究[J].可再生能源,2022,40(07):866-873.DOI:10.13941/j.cnki.21-1469/tk.2022.07.017.
[2]毕贵红,赵鑫,李璐,陈仕龙,陈臣鹏.双模式分解CNN-LSTM集成的短期风速预测模型[J/OL].太阳能学报:1-10[2022-08-09].DOI:10.19912/j.0254-0096.tynxb.2021-1307.
[3]赵鑫,陈臣鹏,毕贵红,陈仕龙.基于PAM-SSD-LSTM的短期风速预测[J/OL].太阳能学报:1-7[2022-08-09].DOI:10.19912/j.0254-0096.tynxb.2021-0900.