- 探索未来,大规模分布式深度强化学习——深入解析IMPALA架构
汤萌妮Margaret
探索未来,大规模分布式深度强化学习——深入解析IMPALA架构scalable_agent项目地址:https://gitcode.com/gh_mirrors/sc/scalable_agent在当今的人工智能研究前沿,深度强化学习(DRL)因其在复杂任务中的卓越表现而备受瞩目。本文要介绍的是一个开源于GitHub的重量级项目:“ScalableDistributedDeep-RLwithImp
- 7. 深度强化学习:智能体的学习与决策
Network_Engineer
机器学习学习机器学习深度学习神经网络python算法
引言深度强化学习结合了强化学习与深度学习的优势,通过智能体与环境的交互,使得智能体能够学习最优的决策策略。深度强化学习在自动驾驶、游戏AI、机器人控制等领域表现出色,推动了人工智能的快速发展。本篇博文将深入探讨深度强化学习的基本框架、经典算法(如DQN、策略梯度法),以及其在实际应用中的成功案例。1.强化学习的基本框架强化学习是机器学习的一个分支,专注于智能体在与环境的交互过程中,学习如何通过最大
- 深度强化学习之DQN-深度学习与强化学习的成功结合
CristianoC
目录概念深度学习与强化学习结合的问题DQN解决结合出现问题的办法DQN算法流程总结一、概念原因:在普通的Q-Learning中,当状态和动作空间是离散且维数不高的时候可以使用Q-Table来存储每个状态动作对应的Q值,而当状态和动作空间是高维连续时,使用Q-Table不现实。一是因为当问题复杂后状态太多,所需内存太大;二是在这么大的表格中查询对应的状态也是一件很耗时的事情。image通常的做法是把
- (18-1)基于深度强化学习的股票交易模型:项目介绍+准备环境
码农三叔
强化学习从入门到实践人工智能深度学习股票交易模型DRLDoubleDQNDuelingDQN
在本章的这个项目中,实现了一个用于股票交易的DRL模型,旨在展示DRL在金融领域的潜力,提供其在股票交易中应用的实际例子。希望通过本章内容的学习,能够为那些对金融与机器学习交叉领域感兴趣的人士提供有益的参考。1.1项目介绍在金融市场中,股票交易是一项充满挑战的任务,需要在高度波动和复杂的市场环境中做出快速且精准的决策。传统的交易策略通常依赖于经验、基本面分析或技术分析。然而,这些方法往往无法在快速
- 人工智能&机器学习&深度学习
AA杂货铺111
机器学习:一切通过优化方法挖掘数据中规律的学科。深度学习:一切运用了神经网络作为参数结构进行优化的机器学习算法。强化学习:不仅能利用现有数据,还可以通过对环境的探索获得新数据,并利用新数据循环往复地更新迭代现有模型的机器学习算法。学习是为了更好地对环境进行探索,而探索是为了获取数据进行更好的学习。深度强化学习:一切运用了神经网络作为参数结构进行优化的强化学习算法。人工智能定义与分类人工智能(Art
- 学习日志6
Simon#0209
学习
关于量子强化学习:论文Variational_Quantum_Circuits_for_Deep_Reinforcement_Learning:变分量子电路在深度强化学习中的应用论文主要内容:将经典深度强化学习算法(如经验重放和目标网络)重塑为变分量子电路的表示摘要当前最先进的机器学习方法基于经典冯·诺伊曼计算架构,并在许多工业和学术领域得到广泛应用。随着量子计算的发展,研究人员和技术巨头们试图为
- 【科技前沿】用深度强化学习优化电网,让电力调度更聪明!
风清扬雨
人工智能人工智能python智能电网深度强化学习
Hey小伙伴们,今天我要跟大家分享一个超级酷炫的技术应用——深度强化学习在电网优化中的典型案例!如果你对机器学习感兴趣,或是正寻找如何用AI技术解决实际问题的方法,这篇分享绝对不容错过!✨开场白大家好,我是你们的技术小助手!今天我们要聊的是如何利用深度强化学习(DRL)来优化电网的调度,让电力系统变得更智能、更高效。引入话题想象一下,如果你能够通过一种先进的技术手段,自动调整电网中的能源分配,不
- drools in java_drools 编程例子
weixin_39829501
droolsinjava
关于Drools更多的介绍可以参考之前的文章。这篇文章主要讲解如何在项目中执行DRL文件并取得结果。ERROR如果遇到这样的错误,大部分情况下是drl规则文件所在的文件夹,没有被项目识别为resources文件夹,在IntelliJIDE中可以使用设置为资源文件夹来解决。Exceptioninthread"main"java.lang.RuntimeException:UnabletogetLas
- 基于人工智能的期权量化交易
阿岛格
人工智能.量化投资人工智能机器学习大数据强化学习
基于人工智能的期权量化交易基于人工智能的期权量化交易基于人工智能的期权量化交易该文基于人工智能AI的深度强化学习,进行股票期权的量化投资策略研究及回测评估。作者建立了人工智能学习及交易系统。基于实时/历史期权行情大数据挖掘,通过自行开发的人工智能多agent强化学习模型及评估系统(基于Python/Linux),对接实时交易接口进行了实盘环境的交易回测和评估。专题:人工智能.量化投资纲要:一、前言
- 强化学习入门到不想放弃-1
周博洋K
人工智能
本来想写到深度学习里的,但是线下和别人聊RLHF,和PPO,DPO的时候,我发现大家一脑袋问号,其实也正常,深度学习里面数学的东西没那么多,入门容易一点,强化学习(现在也都谈强化深度学习,或者深度强化学习了)反而没那么要算力,要一堆算法和数学,所以就单开一个系列,专门写强化学习吧其实强化学习,某种程度上比深度学习更早的走进大家的视野,没错,就是那个把李昌镐,柯洁给打败的Alpha第一课我们先讲点基
- 王树森:学 DRL 走过的弯路太多,想让大家避开(文末赠送福利)
人工智能与算法学习
大家都知道,深度强化学习(DeepReinforcementLearning,DRL)就是应用了神经网络的强化学习。而强化学习是机器学习的一个分支,研究如何基于对环境的观测做出决策,以最大化长期回报。从20世纪80年代至今,强化学习一直是机器学习领域的热门研究方向。大家耳熟能详的经典强化学习方法——Q学习、REINFORCE、actor-critic——就是20世纪80年代提出的,一直沿用至今。而
- KIE
金刚_30bf
版本7.9.0KIE生态图片.pngOptaPlanner是一个本地搜索和优化的工具,独立于DroolsPlanner。UberFire是新的workbench工程,提供类似Eclipse工作台功能。KIE-WB是整合了Guvnor、drools、jbpm的uber工作台。jbpm-wb是虚的。生命周期Author创作使用DRL、BPMN2、决策表、类进行知识创作构建将创作的知识构建为可部署的单元
- 深度强化学习系列【1】- 强化学习的背景、基础理论等
cnjs1994
人工智能自动驾驶
引言:这篇博客主要是学习清华大学车辆学院李升波老师(ShengboEbenLi)的PPT课件的一些心得体会。深度强化学习系列【1】-强化学习的背景、基础理论等1.深度强化学习的背景、发展与理论变迁1.1序1.2AlphaGo的崛起1.3Waymo(谷歌收购)加州公共道路无人驾驶项目获批1.4关于生物的神经元数1.5AI的主要类别2.一些典型的问题2.1如何求解-连续、离散空间下的序列决策优化问题?
- 深度强化学习基础【1】-动态规划问题初探(leetcode算法的63题-不同路径II)
cnjs1994
算法动态规划leetcode
引言:这篇博客的算法问题来源于leetcode算法的63题,一个网格世界的机器人运动规划问题。通过这篇博客可以使得读者更加了解强化学习关于动态规划方面的基础知识。这深度强化学习基础【1】-动态规划问题初探(leetcode算法的63题-不同路径II)1.问题描述2.问题分析3.Python编程实现3.1For循环遍历3.2滚动数组实现3.3试验测试结果1.问题描述1个机器人位于一个mxn网格的左上
- PyTorch 2.2 中文官方教程(八)
绝不原创的飞龙
人工智能pytorch
训练一个玛丽奥玩游戏的RL代理原文:pytorch.org/tutorials/intermediate/mario_rl_tutorial.html译者:飞龙协议:CCBY-NC-SA4.0注意点击这里下载完整的示例代码作者:冯元松,SurajSubramanian,王浩,郭宇章。这个教程将带你了解深度强化学习的基础知识。最后,你将实现一个能够自己玩游戏的AI马里奥(使用双深度Q网络)。虽然这个
- 深度强化学习——基本概念(1)
Tandy12356_
深度强化学习人工智能深度学习神经网络
一、基本概念1、状态、动作、智能体可以认为状态就是第一张图的环境,虽然状态和observation还是有区别智能体Agent是马里奥,动作Action就是上下左右的运动2、策略函数(policyΠ)强化学习的重点就是求出这个策略函数,使得在任意一个给定状态S可以做出最应该采取的动作,只要有了policy函数,就可以让超级玛丽自动做出动作来打赢游戏,agent的动作是随机的,根据policy输出的概
- OpenAI Gym 高级教程——深度强化学习库的高级用法
Echo_Wish
Python算法Python笔记python算法开发语言
PythonOpenAIGym高级教程:深度强化学习库的高级用法在本篇博客中,我们将深入探讨OpenAIGym高级教程,重点介绍深度强化学习库的高级用法。我们将使用TensorFlow和StableBaselines3这两个流行的库来实现深度强化学习算法,以及Gym提供的环境。1.安装依赖首先,确保你已经安装了OpenAIGym、TensorFlow和StableBaselines3:pipins
- 论文阅读-一种用于大规模分布式文件系统中基于深度强化学习的自适应元数据管理方案
向来痴_
论文阅读
名称:AnAdaptiveMetadataManagementSchemeBasedonDeepReinforcementLearningforLarge-ScaleDistributedFileSystemsI.引言如今,大型集群文件系统的规模已达到PB甚至EB级别,由此产生的数据呈指数级增长。系统架构师不断设计和优化技术和方法,以向用户提供理想的服务。在这种情况下,元数据管理在提高系统性能中扮
- 机器学习---强化学习---目前的坑
Iverson_henry
当前(2019年)机器学习中有哪些研究方向特别的坑?微尘强化学习MAB嗑盐ing;nlp/推荐系统预备卒53人赞同了该回答深度强化学习~1.深度强化学习可能是非常采样低效的(sampleinefficient):强化学习也有其规划谬误,学习一个策略通常需要比想象更多的样本。在DeepMind的跑酷论文(EmergenceofLocomotionBehavioursinRichEnvironment
- 深度强化学习(王树森)笔记11
阿正的梦工坊
ReinforcementLearning强化学习
深度强化学习(DRL)本文是学习笔记,如有侵权,请联系删除。本文在ChatGPT辅助下完成。参考链接DeepReinforcementLearning官方链接:https://github.com/wangshusen/DRL源代码链接:https://github.com/DeepRLChinese/DeepRL-ChineseB站视频:【王树森】深度强化学习(DRL)豆瓣:深度强化学习文章目录
- 时空AI技术:深度强化学习在智能城市领域应用介绍
JUST极客
深度强化学习是近年来热起来的一项技术。深度强化学习的控制与决策流程必须包含状态,动作,奖励是三要素。在建模过程中,智能体根据环境的当前状态信息输出动作作用于环境,然后接收到下一时刻状态信息和奖励。以众所周知的AlphaGo为例,盘面就是当前的状态,动作就是下一步往哪里落子,奖励就是最终的输赢。整个强化学习过程就是不断与环境交互,在交互的过程中产生数据,并利用这些交互产生的数据来学习的过程。正是在深
- 使用Isaac Gym 来强化学习mycobot 机械臂执行抓取任务
大象机器人
协作机器人桌面六轴机械臂人工智能机器人人工智能python计算机视觉
我现在将介绍一个利用myCobot的实验。这一次,实验将使用模拟器而不是物理机器进行。当尝试使用机器人进行深度强化学习时,在物理机器上准备大量训练数据可能具有挑战性。但是,使用模拟器,很容易收集大量数据集。然而,对于那些不熟悉它们的人来说,模拟器可能看起来令人生畏。因此,我们尝试使用由Nvidia开发的IsaacGym,它使我们能够实现从创建实验环境到仅使用Python代码进行强化学习的所有目标。
- 一起学习飞桨 深度强化学习算法DQN
路人与大师
学习paddlepaddle算法
LEARN_FREQ=5#trainingfrequencyMEMORY_SIZE=200000MEMORY_WARMUP_SIZE=200BATCH_SIZE=64LEARNING_RATE=0.0005GAMMA=0.99#trainanepisodedefrun_train_episode(agent,env,rpm):total_reward=0obs=env.reset()step=0w
- icra2021 reinforcement learning paper list
吃醋不吃辣的雷儿
reinforcementlearningAutonomousVehicleNavigationDeepReinforcementLearningforMaplessNavigationofaHybridAerialUnderwaterVehiclewithMediumTransition自从在Atari类游戏中将深度Q学习应用于连续动作域以来,用于运动控制的深度强化学习(Deep-RL)技术得到
- 深度强化学习(王树森)笔记09
阿正的梦工坊
ReinforcementLearning强化学习
深度强化学习(DRL)本文是学习笔记,如有侵权,请联系删除。本文在ChatGPT辅助下完成。参考链接DeepReinforcementLearning官方链接:https://github.com/wangshusen/DRL源代码链接:https://github.com/DeepRLChinese/DeepRL-ChineseB站视频:【王树森】深度强化学习(DRL)豆瓣:深度强化学习文章目录
- 深度强化学习(王树森)笔记07
阿正的梦工坊
ReinforcementLearning强化学习
深度强化学习(DRL)本文是学习笔记,如有侵权,请联系删除。本文在ChatGPT辅助下完成。参考链接DeepReinforcementLearning官方链接:https://github.com/wangshusen/DRL源代码链接:https://github.com/DeepRLChinese/DeepRL-ChineseB站视频:【王树森】深度强化学习(DRL)豆瓣:深度强化学习文章目录
- 深度强化学习基本概念-王树森课程笔记
淀粉爱好者
机器学习深度学习
学习资料:深度强化学习课程-王树森目录一、概率论知识二、强化学习专业术语三、强化学习的随机性来源1.action2.statetransition四、Rewards,Returns&ValueFuctions1.Return2.ValueFunction五、强化学习用AI控制agent1.Policy-basedlearning2.Value-basedlearning一、概率论知识RandomV
- 深度强化学习 _Actor-Critic 王树森课程笔记
淀粉爱好者
神经网络深度学习机器学习
Actor-CriticMethod一、ValueNetwokandPolicyNetwork1.Policynetwork(Actor):π(a∣s;θ)\pi(a|s;\bm\theta)π(a∣s;θ)2.Valuenetwork(Critic):q(s,a;w)q(s,a;\textbf{w})q(s,a;w)二、训练神经网络1.用TD算法更新价值网络2.用策略梯度算法更新策略网络三、Ac
- 深度强化学习(王树森版)学习笔记(一)——机器学习基础
向南而行灬
机器学习人工智能深度学习
前言由于本人的工作与深度强化学习相关,想找个机会重新复习下深度强化学习的相关知识,正好手上有这本书,粗略一看感觉知识点挺简洁的,内容也挺全面,也提供了一些学习资料。所以开个坑记录一下这本书的学习过程。这本书的相关资料(PPT,源代码)可以在以下链接获取:https://www.ituring.com.cn/book/2982首先我们会按照这本书的顺序讲一下机器学习的一些基础理论部分。1.1线性模型
- 深度强化学习(王树森)笔记06
阿正的梦工坊
ReinforcementLearning强化学习
深度强化学习(DRL)本文是学习笔记,如有侵权,请联系删除。本文在ChatGPT辅助下完成。参考链接DeepReinforcementLearning官方链接:https://github.com/wangshusen/DRL源代码链接:https://github.com/DeepRLChinese/DeepRL-ChineseB站视频:【王树森】深度强化学习(DRL)豆瓣:深度强化学习文章目录
- rust的指针作为函数返回值是直接传递,还是先销毁后创建?
wudixiaotie
返回值
这是我自己想到的问题,结果去知呼提问,还没等别人回答, 我自己就想到方法实验了。。
fn main() {
let mut a = 34;
println!("a's addr:{:p}", &a);
let p = &mut a;
println!("p's addr:{:p}", &a
- java编程思想 -- 数据的初始化
百合不是茶
java数据的初始化
1.使用构造器确保数据初始化
/*
*在ReckInitDemo类中创建Reck的对象
*/
public class ReckInitDemo {
public static void main(String[] args) {
//创建Reck对象
new Reck();
}
}
- [航天与宇宙]为什么发射和回收航天器有档期
comsci
地球的大气层中有一个时空屏蔽层,这个层次会不定时的出现,如果该时空屏蔽层出现,那么将导致外层空间进入的任何物体被摧毁,而从地面发射到太空的飞船也将被摧毁...
所以,航天发射和飞船回收都需要等待这个时空屏蔽层消失之后,再进行
&
- linux下批量替换文件内容
商人shang
linux替换
1、网络上现成的资料
格式: sed -i "s/查找字段/替换字段/g" `grep 查找字段 -rl 路径`
linux sed 批量替换多个文件中的字符串
sed -i "s/oldstring/newstring/g" `grep oldstring -rl yourdir`
例如:替换/home下所有文件中的www.admi
- 网页在线天气预报
oloz
天气预报
网页在线调用天气预报
<%@ page language="java" contentType="text/html; charset=utf-8"
pageEncoding="utf-8"%>
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transit
- SpringMVC和Struts2比较
杨白白
springMVC
1. 入口
spring mvc的入口是servlet,而struts2是filter(这里要指出,filter和servlet是不同的。以前认为filter是servlet的一种特殊),这样就导致了二者的机制不同,这里就牵涉到servlet和filter的区别了。
参见:http://blog.csdn.net/zs15932616453/article/details/8832343
2
- refuse copy, lazy girl!
小桔子
copy
妹妹坐船头啊啊啊啊!都打算一点点琢磨呢。文字编辑也写了基本功能了。。今天查资料,结果查到了人家写得完完整整的。我清楚的认识到:
1.那是我自己觉得写不出的高度
2.如果直接拿来用,很快就能解决问题
3.然后就是抄咩~~
4.肿么可以这样子,都不想写了今儿个,留着作参考吧!拒绝大抄特抄,慢慢一点点写!
- apache与php整合
aichenglong
php apache web
一 apache web服务器
1 apeche web服务器的安装
1)下载Apache web服务器
2)配置域名(如果需要使用要在DNS上注册)
3)测试安装访问http://localhost/验证是否安装成功
2 apache管理
1)service.msc进行图形化管理
2)命令管理,配
- Maven常用内置变量
AILIKES
maven
Built-in properties
${basedir} represents the directory containing pom.xml
${version} equivalent to ${project.version} (deprecated: ${pom.version})
Pom/Project properties
Al
- java的类和对象
百合不是茶
JAVA面向对象 类 对象
java中的类:
java是面向对象的语言,解决问题的核心就是将问题看成是一个类,使用类来解决
java使用 class 类名 来创建类 ,在Java中类名要求和构造方法,Java的文件名是一样的
创建一个A类:
class A{
}
java中的类:将某两个事物有联系的属性包装在一个类中,再通
- JS控制页面输入框为只读
bijian1013
JavaScript
在WEB应用开发当中,增、删除、改、查功能必不可少,为了减少以后维护的工作量,我们一般都只做一份页面,通过传入的参数控制其是新增、修改或者查看。而修改时需将待修改的信息从后台取到并显示出来,实际上就是查看的过程,唯一的区别是修改时,页面上所有的信息能修改,而查看页面上的信息不能修改。因此完全可以将其合并,但通过前端JS将查看页面的所有信息控制为只读,在信息量非常大时,就比较麻烦。
- AngularJS与服务器交互
bijian1013
JavaScriptAngularJS$http
对于AJAX应用(使用XMLHttpRequests)来说,向服务器发起请求的传统方式是:获取一个XMLHttpRequest对象的引用、发起请求、读取响应、检查状态码,最后处理服务端的响应。整个过程示例如下:
var xmlhttp = new XMLHttpRequest();
xmlhttp.onreadystatechange
- [Maven学习笔记八]Maven常用插件应用
bit1129
maven
常用插件及其用法位于:http://maven.apache.org/plugins/
1. Jetty server plugin
2. Dependency copy plugin
3. Surefire Test plugin
4. Uber jar plugin
1. Jetty Pl
- 【Hive六】Hive用户自定义函数(UDF)
bit1129
自定义函数
1. 什么是Hive UDF
Hive是基于Hadoop中的MapReduce,提供HQL查询的数据仓库。Hive是一个很开放的系统,很多内容都支持用户定制,包括:
文件格式:Text File,Sequence File
内存中的数据格式: Java Integer/String, Hadoop IntWritable/Text
用户提供的 map/reduce 脚本:不管什么
- 杀掉nginx进程后丢失nginx.pid,如何重新启动nginx
ronin47
nginx 重启 pid丢失
nginx进程被意外关闭,使用nginx -s reload重启时报如下错误:nginx: [error] open() “/var/run/nginx.pid” failed (2: No such file or directory)这是因为nginx进程被杀死后pid丢失了,下一次再开启nginx -s reload时无法启动解决办法:nginx -s reload 只是用来告诉运行中的ng
- UI设计中我们为什么需要设计动效
brotherlamp
UIui教程ui视频ui资料ui自学
随着国际大品牌苹果和谷歌的引领,最近越来越多的国内公司开始关注动效设计了,越来越多的团队已经意识到动效在产品用户体验中的重要性了,更多的UI设计师们也开始投身动效设计领域。
但是说到底,我们到底为什么需要动效设计?或者说我们到底需要什么样的动效?做动效设计也有段时间了,于是尝试用一些案例,从产品本身出发来说说我所思考的动效设计。
一、加强体验舒适度
嗯,就是让用户更加爽更加爽的用你的产品。
- Spring中JdbcDaoSupport的DataSource注入问题
bylijinnan
javaspring
参考以下两篇文章:
http://www.mkyong.com/spring/spring-jdbctemplate-jdbcdaosupport-examples/
http://stackoverflow.com/questions/4762229/spring-ldap-invoking-setter-methods-in-beans-configuration
Sprin
- 数据库连接池的工作原理
chicony
数据库连接池
随着信息技术的高速发展与广泛应用,数据库技术在信息技术领域中的位置越来越重要,尤其是网络应用和电子商务的迅速发展,都需要数据库技术支持动 态Web站点的运行,而传统的开发模式是:首先在主程序(如Servlet、Beans)中建立数据库连接;然后进行SQL操作,对数据库中的对象进行查 询、修改和删除等操作;最后断开数据库连接。使用这种开发模式,对
- java 关键字
CrazyMizzz
java
关键字是事先定义的,有特别意义的标识符,有时又叫保留字。对于保留字,用户只能按照系统规定的方式使用,不能自行定义。
Java中的关键字按功能主要可以分为以下几类:
(1)访问修饰符
public,private,protected
p
- Hive中的排序语法
daizj
排序hiveorder byDISTRIBUTE BYsort by
Hive中的排序语法 2014.06.22 ORDER BY
hive中的ORDER BY语句和关系数据库中的sql语法相似。他会对查询结果做全局排序,这意味着所有的数据会传送到一个Reduce任务上,这样会导致在大数量的情况下,花费大量时间。
与数据库中 ORDER BY 的区别在于在hive.mapred.mode = strict模式下,必须指定 limit 否则执行会报错。
- 单态设计模式
dcj3sjt126com
设计模式
单例模式(Singleton)用于为一个类生成一个唯一的对象。最常用的地方是数据库连接。 使用单例模式生成一个对象后,该对象可以被其它众多对象所使用。
<?phpclass Example{ // 保存类实例在此属性中 private static&
- svn locked
dcj3sjt126com
Lock
post-commit hook failed (exit code 1) with output:
svn: E155004: Working copy 'D:\xx\xxx' locked
svn: E200031: sqlite: attempt to write a readonly database
svn: E200031: sqlite: attempt to write a
- ARM寄存器学习
e200702084
数据结构C++cC#F#
无论是学习哪一种处理器,首先需要明确的就是这种处理器的寄存器以及工作模式。
ARM有37个寄存器,其中31个通用寄存器,6个状态寄存器。
1、不分组寄存器(R0-R7)
不分组也就是说说,在所有的处理器模式下指的都时同一物理寄存器。在异常中断造成处理器模式切换时,由于不同的处理器模式使用一个名字相同的物理寄存器,就是
- 常用编码资料
gengzg
编码
List<UserInfo> list=GetUserS.GetUserList(11);
String json=JSON.toJSONString(list);
HashMap<Object,Object> hs=new HashMap<Object, Object>();
for(int i=0;i<10;i++)
{
- 进程 vs. 线程
hongtoushizi
线程linux进程
我们介绍了多进程和多线程,这是实现多任务最常用的两种方式。现在,我们来讨论一下这两种方式的优缺点。
首先,要实现多任务,通常我们会设计Master-Worker模式,Master负责分配任务,Worker负责执行任务,因此,多任务环境下,通常是一个Master,多个Worker。
如果用多进程实现Master-Worker,主进程就是Master,其他进程就是Worker。
如果用多线程实现
- Linux定时Job:crontab -e 与 /etc/crontab 的区别
Josh_Persistence
linuxcrontab
一、linux中的crotab中的指定的时间只有5个部分:* * * * *
分别表示:分钟,小时,日,月,星期,具体说来:
第一段 代表分钟 0—59
第二段 代表小时 0—23
第三段 代表日期 1—31
第四段 代表月份 1—12
第五段 代表星期几,0代表星期日 0—6
如:
*/1 * * * * 每分钟执行一次。
*
- KMP算法详解
hm4123660
数据结构C++算法字符串KMP
字符串模式匹配我们相信大家都有遇过,然而我们也习惯用简单匹配法(即Brute-Force算法),其基本思路就是一个个逐一对比下去,这也是我们大家熟知的方法,然而这种算法的效率并不高,但利于理解。
假设主串s="ababcabcacbab",模式串为t="
- 枚举类型的单例模式
zhb8015
单例模式
E.编写一个包含单个元素的枚举类型[极推荐]。代码如下:
public enum MaYun {himself; //定义一个枚举的元素,就代表MaYun的一个实例private String anotherField;MaYun() {//MaYun诞生要做的事情//这个方法也可以去掉。将构造时候需要做的事情放在instance赋值的时候:/** himself = MaYun() {*
- Kafka+Storm+HDFS
ssydxa219
storm
cd /myhome/usr/stormbin/storm nimbus &bin/storm supervisor &bin/storm ui &Kafka+Storm+HDFS整合实践kafka_2.9.2-0.8.1.1.tgzapache-storm-0.9.2-incubating.tar.gzKafka安装配置我们使用3台机器搭建Kafk
- Java获取本地服务器的IP
中华好儿孙
javaWeb获取服务器ip地址
System.out.println("getRequestURL:"+request.getRequestURL());
System.out.println("getLocalAddr:"+request.getLocalAddr());
System.out.println("getLocalPort:&quo