参数epoch、 iteration和batchsize的区别

目录

epoch、iteration、batchsize的区别

名词解释:

为什么要使用多于一个epoch?

换算关系:

举个例子:

参考资料:


epoch、iteration、batchsize的区别

深度学习中经常看到epoch、 iteration和batchsize,这三个的区别:

(1)batchsize:批大小。在深度学习中,一般采用SGD训练,即每次训练在训练集中取batchsize个样本训练;
(2)iteration:1个iteration等于使用batchsize个样本训练一次;
(3)epoch:1个epoch等于使用训练集中的全部样本训练一次;

举个例子,训练集有1000个样本,batchsize=10,那么:
训练完整个样本集需要:
100次iteration,1次epoch。

名词解释:

参数epoch、 iteration和batchsize的区别_第1张图片

  • Epoch(时期):
    当一个完整的数据集通过了神经网络一次并且返回了一次,这个过程称为一次>epoch。(也就是说,所有训练样本在神经网络中 进行了一次正向传播一次反向传播
    再通俗一点,一个Epoch就是将所有训练样本训练一次的过程。

然而,当一个Epoch的样本(也就是所有的训练样本)数量可能太过庞大(对于计算机而言),就需要把它分成多个小块,也就是就是分成多个Batch 来进行训练。**

  • Batch(批 / 一批样本):
    将整个训练样本分成若干个Batch。

  • Batch_Size(批大小):
    每批样本的大小。

  • Iteration(一次迭代):
    训练一个Batch就是一次Iteration(这个概念跟程序语言中的迭代器相似)。

为什么要使用多于一个epoch?

在神经网络中传递完整的数据集一次是不够的,而且我们需要将完整的数据集在同样的神经网络中传递多次。但请记住,我们使用的是有限的数据集,并且我们使用一个迭代过程即梯度下降来优化学习过程。如下图所示。因此仅仅更新一次或者说使用一个epoch是不够的。

参数epoch、 iteration和batchsize的区别_第2张图片

随着epoch数量增加,神经网络中的权重的更新次数也在增加,曲线从欠拟合变得过拟合。

那么,问题来了,几个epoch才是合适的呢?

不幸的是,这个问题并没有正确的答案。对于不同的数据集,答案是不一样的。但是数据的多样性会影响合适的epoch的数量。比如,只有黑色的猫的数据集与有各种颜色的猫的数据集。

换算关系:

实际上,梯度下降的几种方式的根本区别就在于上面公式中的 Batch_Size 不同。

参数epoch、 iteration和batchsize的区别_第3张图片

举个例子:

mnist 数据集有60000张图片作为训练数据,10000张图片作为测试数据。假设现在选择 Batch_Size =100对模型进行训练。迭代30000次。

  • 每个 Epoch 要训练的图片数量:60000(训练集上的所有图像)
  • 训练集具有的 Batch 个数:60000/100 =600
  • 每个 Epoch 需要完成的 Batch 个数:600
  • 每个 Epoch 具有的 Iteration 个数:600(完成一个Batch训练,相当于参数迭代一次)
  • 每个 Epoch 中发生模型权重更新的次数:600
  • 训练 10 个Epoch后,模型权重更新的次数:600*10 =6000
  • 不同Epoch的训练,其实用的是同一个训练集的数据。第1个Epoch和第10个Epoch虽然用的都是训练集的图片,但是对模型的权重更新值却是完全不同的。因为不同Epoch的模型处于代价函数空间上的不同位置,模型的训练代越靠后,越接近谷底,其代价越小。
  • 总共完成30000次迭代,相当于完成了个30000/600=50个Epoch

参考资料:

  • 知乎:训练神经网络中最基本的三个概念:Epoch, Batch, Iteration
  • 博客:深度学习中为什么要使用多于一个epoch?
  • 博客:神经网络中Epoch、Iteration、Batchsize相关理解和说明
  • 博客:深度学习(深度神经网络)中最基本的三个概念:Epoch, Batch, Iteration

 

 

你可能感兴趣的:(参数epoch、 iteration和batchsize的区别)