1.残差网络
本文为用带残差块的CNN网络实现MNIST数据集手写数字的识别。
残差网络比起LeNet等简单的神经网络,不同之初在于,多了一个连接线。
左边为基础的CNN结构,右边为带残差的网络结构
残差块是目前网络模型中,一个跟经典、很基础的结构,像DenseNet就是基于残差块来提出的,一个新的网络模型。
参考笔者的上篇博客:CNN实现MNIST数据集手写数字识别
4.代码实现(pytorch)
import torch
from torchvision import transforms
from torchvision import datasets
from torch.utils.data import DataLoader
import torch.optim as optim
import torch.nn.functional as F
import matplotlib.pyplot as plt
batch_size = 64
transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.1307),(0.3081)) #两个参数,平均值和标准差
])
train_dataset = datasets.MNIST(
root="../dataset/mnist/",
train= True,
download= True,
transform= transform
)
train_loader = DataLoader(train_dataset,
shuffle = True,
batch_size = batch_size)
test_dataset = datasets.MNIST(
root="../dataset/mnist/",
train=False,
download=True,
transform=transform
)
test_loder = DataLoader(test_dataset,
shuffle = True,
batch_size = batch_size)
class ResidualBlock(torch.nn.Module):
def __init__(self, channels):
super(ResidualBlock, self).__init__()
self.channels = channels
self.conv1 = torch.nn.Conv2d(channels, channels, kernel_size=3, padding=1)
self.conv2 = torch.nn.Conv2d(channels, channels, kernel_size=3, padding=1)
def forward(self, x):
y = F.relu(self.conv1(x))
y = self.conv2(y)
return F.relu(x + y)
'''
CLASS torch.nn.Conv2d(in_channels, out_channels, kernel_size, stride=1, padding=0,
dilation=1, groups=1, bias=True, padding_mode='zeros', device=None, dtype=None)
'''
'''
CLASS torch.nn.MaxPool2d(kernel_size, stride=None, padding=0,
dilation=1, return_indices=False, ceil_mode=False)
'''
class Net(torch.nn.Module):
def __init__(self):
super(Net, self).__init__()
self.conv1 = torch.nn.Conv2d(in_channels=1, out_channels=16, kernel_size=5)
self.conv2 = torch.nn.Conv2d(in_channels=16, out_channels=32, kernel_size=5) # 88 = 24x3 + 16
self.rblock1 = ResidualBlock(16)
self.rblock2 = ResidualBlock(32)
self.maxpooling = torch.nn.MaxPool2d(2)
# 建议读者在实现时,可以做增加几个全连接层,参考笔者博客:
#https://blog.csdn.net/t18438605018/article/details/122137737?spm=1001.2014.3001.5501
self.linear1 = torch.nn.Linear(512, 10)
def forward(self, x):
in_size = x.size(0)
x = self.maxpooling(F.relu(self.conv1(x)))
x = self.rblock1(x)
x = self.maxpooling(F.relu(self.conv2(x)))
x = self.rblock2(x)
x = x.view(in_size, -1) # Flatten操作
x = self.linear1(x)
return x
model = Net()
#有GPU就使用GPU,没有就是用CPU
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model.to(device)
criterion = torch.nn.CrossEntropyLoss()
optimizer = optim.SGD(model.parameters(), lr=0.01, momentum= 0.5)
def train(epoch):
total = 0
running_loss = 0.0
train_loss = 0.0 #记录每次epoch的损失
accuracy = 0 #记录每次epoch的accuracy
for batch_id, data in enumerate(train_loader,0):
inputs, target = data
inputs, target = inputs.to(device), target.to(device)
optimizer.zero_grad()
# forword + backward + update
outputs = model(inputs)
loss = criterion(outputs, target)
_, predicted = torch.max(outputs.data, dim=1)
accuracy += (predicted == target).sum().item()
total += target.size(0)
loss.backward()
optimizer.step()
running_loss += loss.item()
train_loss = running_loss
#每迭代300次,求一下这三百次迭代的平均
if batch_id % 300 == 299:
print('[%d, %5d] loss: %.3f' %(epoch+1, batch_id+1, running_loss / 300))
running_loss = 0.0
print('第 %d epoch的 Accuracy on train set: %d %%, Loss on train set: %f' % (epoch + 1, 100 * accuracy / total, train_loss))
#返回acc和loss
return 1.0 * accuracy / total, train_loss
def validation(epoch):
correct = 0
total = 0
val_loss = 0.0
with torch.no_grad():
for data in test_loder:
images, target = data
images, target = images.to(device), target.to(device)
outputs = model(images)
loss = criterion(outputs, target)
val_loss += loss.item()
_, predicted = torch.max(outputs.data, dim=1)
total += target.size(0)
correct += (predicted == target).sum().item()
print('第 %d epoch的 Accuracy on validation set: %d %%, Loss on validation set: %f' %(epoch+1,100*correct / total, val_loss))
#返回acc和loss
return 1.0 * correct / total, val_loss
def draw_in_one(list,epoch):
# x_axix,train_pn_dis这些都是长度相同的list()
# 开始画图
x_axix = [x for x in range(1, epoch+1)] #把ranage转化为list
train_acc = list[0]
train_loss = list[1]
val_acc = list[2]
val_loss = list[3]
#sub_axix = filter(lambda x: x % 200 == 0, x_axix)
plt.title('Result Analysis')
plt.plot(x_axix, train_acc, color='green', label='training accuracy')
plt.plot(x_axix, train_loss, color='red', label='training loss')
plt.plot(x_axix, val_acc, color='skyblue', label='val accuracy')
plt.plot(x_axix, val_loss, color='blue', label='val loss')
plt.legend() # 显示图例
plt.xlabel('epoch times')
plt.ylabel('rate')
plt.show()
# python 一个折线图绘制多个曲线
if __name__ == '__main__':
train_loss = []
train_acc = []
val_loss = []
val_acc = []
epoches = 10
list = []
for epoch in range(epoches):
acc1, loss1 = train(epoch)
train_loss.append(loss1)
train_acc.append(acc1)
acc2, loss2 = validation(epoch)
val_loss.append(loss2)
val_acc.append(acc2)
# 四幅图合并绘制
list.append(train_acc)
list.append(train_loss)
list.append(val_acc)
list.append(val_loss)
draw_in_one(list, epoches)
本文代码与CNN实现MNIST数据集手写数字识别代码不同之处,仅在于网络模型换了。其它均未更改。
在验证集上,识别的准确率达到99%。
控制台输出信息:
E:\anaconda3\envs\pytorch\python.exe D:/PycharmProjects/pytorchProject/ReNet实现手写数字识别.py
[1, 300] loss: 0.593
[1, 600] loss: 0.153
[1, 900] loss: 0.118
第 1 epoch的 Accuracy on train set: 91 %, Loss on train set: 3.547480
第 1 epoch的 Accuracy on validation set: 97 %, Loss on validation set: 12.158820
[2, 300] loss: 0.087
[2, 600] loss: 0.083
[2, 900] loss: 0.081
第 2 epoch的 Accuracy on train set: 97 %, Loss on train set: 2.241397
第 2 epoch的 Accuracy on validation set: 98 %, Loss on validation set: 9.401881
[3, 300] loss: 0.059
[3, 600] loss: 0.060
[3, 900] loss: 0.062
第 3 epoch的 Accuracy on train set: 98 %, Loss on train set: 2.196551
第 3 epoch的 Accuracy on validation set: 98 %, Loss on validation set: 7.038621
[4, 300] loss: 0.051
[4, 600] loss: 0.050
[4, 900] loss: 0.043
第 4 epoch的 Accuracy on train set: 98 %, Loss on train set: 1.987330
第 4 epoch的 Accuracy on validation set: 98 %, Loss on validation set: 6.167475
[5, 300] loss: 0.046
[5, 600] loss: 0.039
[5, 900] loss: 0.038
第 5 epoch的 Accuracy on train set: 98 %, Loss on train set: 1.205675
第 5 epoch的 Accuracy on validation set: 98 %, Loss on validation set: 5.971746
[6, 300] loss: 0.035
[6, 600] loss: 0.039
[6, 900] loss: 0.035
第 6 epoch的 Accuracy on train set: 98 %, Loss on train set: 1.088960
第 6 epoch的 Accuracy on validation set: 98 %, Loss on validation set: 5.528260
[7, 300] loss: 0.029
[7, 600] loss: 0.034
[7, 900] loss: 0.030
第 7 epoch的 Accuracy on train set: 99 %, Loss on train set: 1.450512
第 7 epoch的 Accuracy on validation set: 98 %, Loss on validation set: 5.239810
[8, 300] loss: 0.027
[8, 600] loss: 0.026
[8, 900] loss: 0.026
第 8 epoch的 Accuracy on train set: 99 %, Loss on train set: 1.436349
第 8 epoch的 Accuracy on validation set: 98 %, Loss on validation set: 5.200812
[9, 300] loss: 0.025
[9, 600] loss: 0.025
[9, 900] loss: 0.023
第 9 epoch的 Accuracy on train set: 99 %, Loss on train set: 1.118738
第 9 epoch的 Accuracy on validation set: 98 %, Loss on validation set: 5.235084
[10, 300] loss: 0.025
[10, 600] loss: 0.022
[10, 900] loss: 0.022
第 10 epoch的 Accuracy on train set: 99 %, Loss on train set: 0.706974
第 10 epoch的 Accuracy on validation set: 99 %, Loss on validation set: 4.611128
Process finished with exit code 0
如果本文帮助了你,请给作者一个关注吧!