- 点云空洞的边界识别提取 pso-bp 神经网络的模型来修复点云空洞 附python代码
点云-激光雷达-Slam-三维牙齿
激光雷达点云c++为主神经网络人工智能深度学习点云python
代码是一个Python程序,用于处理3D点云数据,特别是检测和修复点云中的孔洞区域。1.**导入库**:-`numpy`:用于数学运算。-`open3d`:用于处理3D数据和可视化。-`torch`:PyTorch库,用于深度学习。-`torch.nn`和`torch.optim`:PyTorch的神经网络和优化器模块。-`mpl_toolkits.mplot3d`和`matplotlib.pyp
- Python深度学习033:Python、PyTorch、CUDA和显卡驱动之间的关系
若北辰
Python深度学习python深度学习pytorch
Python、PyTorch、CUDA和显卡驱动之间的关系相当紧密,它们共同构成了一个能够执行深度学习模型的高效计算环境。下面是它们之间关系的简要概述:PythonPython是一种编程语言,广泛用于科学计算、数据分析和机器学习。它是开发和运行PyTorch代码的基础环境。PyTorchPyTorch是一个开源的机器学习库,用于应用如自然语言处理和计算机视觉的深度学习模型。它提供了丰富的API,使
- Activeloop Deep Lake: AI时代的数据湖解决方案
HGWAcsdgvs
人工智能python
技术背景介绍在当前AI技术蓬勃发展的背景下,数据的存储和检索显得尤为重要。ActiveloopDeepLake是一种多模态向量存储解决方案,支持嵌入和元数据(如文本、Json、图像、音频、视频等)的存储。它适用于本地、云端或Activeloop存储,通过嵌入以及其属性进行混合搜索。该解决方案是一个无服务器的数据湖,具备版本控制、查询引擎和深度学习框架的流媒体数据加载器。核心原理解析DeepLake
- Deep Lake:人工智能时代的数据湖
开源项目精选
人工智能
DeepLake是一款由Activeloop开发的开源深度学习数据湖,旨在解决深度学习数据管理的挑战。它提供高效的多模态数据管理、类似Git的版本控制、强大的查询和可视化功能,并与MLOps生态系统无缝集成,助你轻松驾驭海量数据,加速模型训练!Stars数8,458Forks数652主要特点多模态数据支持:支持图像、视频、音频、文本、点云等各种数据类型。张量存储:以深度学习框架友好的张量格式存储数
- PyTorch深度学习框架进阶学习计划 - 第21天:自然语言处理基础
凡人的AI工具箱
深度学习pytorch学习人工智能AI编程AIGC自然语言处理
PyTorch深度学习框架进阶学习计划-第21天自然语言处理基础今天我们将深入学习自然语言处理(NLP)的基础概念,重点关注词嵌入技术、序列建模原理以及主流模型之间的区别和优缺点。通过理解这些基础知识,你将能够更好地应用PyTorch构建NLP应用。1.词嵌入原理与实现词嵌入(WordEmbeddings)是NLP中的核心概念,它将单词映射到连续向量空间,使得语义相似的词在向量空间中距离较近。为什
- PyTorch深度学习框架60天进阶学习计划 - 第19天:时间序列预测
凡人的AI工具箱
深度学习pytorch学习人工智能AI编程迁移学习python
PyTorch深度学习框架60天进阶学习计划-第19天:时间序列预测目录时间序列预测概述滑动窗口数据构造方法归一化策略对比:MinMaxvsZ-ScoreLSTM基础原理Attention机制与LSTM结合LSTM-Attention模型实现TeacherForcing技术与应用Prophet基准模型对比多步预测的滚动验证方法综合实战:股票价格预测1.时间序列预测概述时间序列预测是机器学习中的一个
- PyTorch深度学习框架60天进阶学习计划 - 第18天:模型压缩技术
凡人的AI工具箱
深度学习pytorch学习python人工智能
PyTorch深度学习框架60天进阶学习计划-第18天:模型压缩技术目录模型压缩技术概述知识蒸馏详解软标签生成策略KL散度损失推导温度参数调节结构化剪枝技术通道剪枝评估准则L1-norm剪枝算法APoZ剪枝算法量化训练基础量化类型与精度PyTorch量化API剪枝与量化协同优化Torch.fx动态计算图修改自动化模型压缩流程实现实战案例:ResNet模型压缩性能评估与分析进阶挑战与思考1.模型压缩
- 深度学习c++资源库:vector容器,蓝桥杯常用算法sort,unique(排序+去重)
AI少女小鹿
c++算法开发语言
vector容器1.基本概念是STL中的一个容器类,不同于普通数组的静态空间,vector可以动态扩展。动态扩展:并不是在原空间连接新空间,而是找到更大的内存空间,将原数据拷贝到新空间,释放原空间。是一个序列容器,它允许用户在容器的末尾快速地添加或删除元素。与数组相比,提供了更多的功能,如自动调整大小、随机访问等。2.声明与初始化需要指定元素类型,可通过多种方式进行初始化:#include#inc
- 《探秘人工智能与鸿蒙系统集成开发的硬件基石》
人工智能深度学习
在科技飞速发展的当下,人工智能与鸿蒙系统的集成开发开辟了创新的前沿领域。这一融合不仅代表着技术的演进,更预示着智能设备生态的全新变革。而在这场技术盛宴的背后,坚实的硬件配置是确保开发顺利进行的关键,它就像一座大厦的基石,决定了上层建筑的高度和稳定性。处理器:运算核心的澎湃动力处理器作为硬件系统的核心,在人工智能与鸿蒙系统集成开发中扮演着至关重要的角色。对于模型训练任务,尤其是深度学习模型,其复杂的
- AI基于深度学习的代码搜索案例(一)
人工智能MOS
人工智能深度学习机器学习
1.背景近年来,人工智能逐渐进入各个领域并展现出了强大的能力。在计算机视觉领域,以ImageNet为例,计算机的图像分类水平已经超过了人类。在自然语言处理(NLP)领域,BERT、XLNet以及MASS也一遍遍的刷新着任务榜单。当人工智能进入游戏领域,也取得了惊人的成绩,在Atari系列游戏中,计算机很容易超过了大部分人类,在围棋比赛中,AlphaGo和AlphaZero也已经超越了人类顶尖棋手。
- 大模型相关知识学习随记
m0_65156252
语言模型人工智能自然语言处理
2024/3/151,概念解释:通义千问,是阿里云推出的一个超大规模的语言模型,功能包括多轮对话、文案创作、逻辑推理、多模态理解、多语言支持。能够跟人类进行多轮的交互,也融入了多模态的知识理解,且有文案创作能力,能够续写小说,编写邮件等。2,多模态大模型:多模态大模型是一种基于深度学习的机器学习技术,其核心思想是将不同媒体数据(如文本、图像、音频和视频等)进行融合,通过学习不同模态之间的关联,实现
- DeepSeek在供热行业中的应用
杨航 AI
人工智能深度学习python机器学习算法
目录引言1.1DeepSeek技术概述1.2供暖行业业务挑战1.3DeepSeek在供暖行业的应用前景DeepSeek技术基础2.1深度学习与机器学习2.2自然语言处理(NLP)2.3图像识别与处理2.4数据挖掘与分析供暖行业应用场景3.1设备监控与维护3.1.1设备状态监控3.1.2故障预测与诊断3.1.3维护计划优化3.2能源管理与优化3.2.1能耗数据分析3.2.2热负荷预测3.2.3节能优
- Transformer大模型实战 对比ALBERT与BERT
AI天才研究院
AI大模型企业级应用开发实战Python实战DeepSeekR1&大数据AI人工智能大模型javapythonjavascriptkotlingolang架构人工智能大厂程序员硅基计算碳基计算认知计算生物计算深度学习神经网络大数据AIGCAGILLM系统架构设计软件哲学Agent程序员实现财富自由
文章标题在当今人工智能领域的迅速发展中,Transformer大模型无疑成为了自然语言处理(NLP)领域的璀璨明星。为了深入理解这一技术,我们特别撰写了《Transformer大模型实战对比ALBERT与BERT》这篇文章,旨在为广大读者提供一场关于Transformer模型及其实战应用的技术盛宴。关键词:Transformer,BERT,ALBERT,自然语言处理,深度学习,模型对比,实战应用摘
- Windows 10/11下安装labelImg标注工具
czimt开摆
python
abelImg是深度学习最常用的标注工具之一,下面讲解安装方法!1、下载windows免安装版本进入下载地址:Releases·HumanSignal/labelImg(github.com),选择windows_v1.8.1.zip,下载并解压,直接双击exe文件即可打开或者可以访问https://sjmwsw.com/xTI4Z2、安装labelImg打开命令行cmd终端下使用:pipinst
- [每日一学]数据分析与可视化:anaconda与pythoncharm使用上的区别之处及优越点,使用哪款比较好用
拼命绽放
python开发语言
anaconda、.jupyter·jupyter的基本使用,开发环境与pythoncharm有什么区别?在数据分析和可视化使用中有什么区别?哪个在数据分析和可视化上更占优势?如果用pythoncharm如何去实现数据分析与可视化有影响吗?一、Anaconda是一个开源的Python发行版本,集成了多个常用的数据科学、机器学习、深度学习等相关工具,例如JupyterNotebook、Spyder、
- 五分钟快速掌握windows深度学习环境配置:Anaconda、PyCharm、Pytorch、jupyter notebook
芝帕先生
深度学习windowspycharmpythoncondapip人工智能
目录前言下载并安装Anaconda下载途径安装步骤下载并安装PyCharm安装pytorch安装jupyternotebook前言新手五分钟掌握windows深度学习环境配置:Anaconda、PyCharm、Pytorch配置的时候遇到了很多问题,总结了一下,可以按这个流程无脑配置。通过本流程下载的版本Anaconda2023.03PyCharmCommunity2023.1.3Pytorch2
- 深度学习核心技术深度解析
月落星还在
深度学习深度学习人工智能
一、深度学习的本质与核心思想定义:通过多层非线性变换,自动学习数据层次化表征的机器学习方法核心突破:表征学习:自动发现数据的内在规律,无需人工设计特征端到端学习:直接从原始输入到最终输出,消除中间环节的信息损失分布式表示:通过神经元激活模式的组合,指数级提升表达能力数学本质:f(x)=WLσ(WL−1σ(...σ(W1x+b1)...)+bL−1)+bLf(x)=W_{L}σ(W_{L-1}σ(.
- Vision Transformer (ViT):将Transformer带入计算机视觉的革命性尝试(代码实现)
阿正的梦工坊
DeepLearningDLPaperstransformer计算机视觉深度学习
VisionTransformer(ViT):将Transformer带入计算机视觉的革命性尝试作为一名深度学习研究者,如果你对自然语言处理(NLP)领域的Transformer架构了如指掌,那么你一定不会对它在序列建模中的强大能力感到陌生。然而,2021年由GoogleResearch团队在ICLR上发表的论文《ANIMAGEISWORTH16x16WORDS:TRANSFORMERSFORIM
- 深度学习/机器学习入门基础数学知识整理(一):线性代数基础,矩阵,范数等
chljerry_mouse
线性代数深度学习机器学习
前面大概有2年时间,利用业余时间断断续续写了一个机器学习方法系列,和深度学习方法系列,还有一个三十分钟理解系列(一些趣味知识);新的一年开始了,今年给自己定的学习目标——以补齐基础理论为重点,研究一些基础课题;同时逐步继续写上述三个系列的文章。最近越来越多的研究工作聚焦研究多层神经网络的原理,本质,我相信深度学习并不是无法掌控的“炼金术”,而是真真实实有理论保证的理论体系;本篇打算摘录整理一些最最
- 本地部署时,如何通过硬件加速(如 CUDA、TensorRT)提升 DeepSeek 的推理性能?不同显卡型号的兼容性如何测试?
百态老人
人工智能科技算法vscode
本地部署DeepSeek模型的硬件加速优化与显卡兼容性测试指南一、硬件加速技术实现路径CUDA基础环境搭建版本匹配原则:根据显卡架构选择CUDA版本(如NVIDIARTX50系列需CUDA12+,V100需CUDA11.x),并通过nvcc--version验证安装。GPU加速验证:运行以下代码检查硬件加速状态:importtensorflowastfprint("可用GPU数量:",len(tf
- 图像去雾常见数据集
梦姐的编程日志
图像处理深度学习人工智能
近年来,随着深度学习技术的快速发展,图像去雾任务成为计算机视觉领域的重要研究方向之一。高质量的数据集是算法研究的基础,本文将介绍一些常用的图像去雾数据集,包括其特点、应用场景以及下载地址。1.RESIDE数据集RESIDE(REalisticSingleImageDEhazing)数据集是目前最常用的图像去雾数据集之一。该数据集提供了多种规模的子数据集,主要分为以下几部分:IndoorTraini
- 点云从入门到精通技术详解100篇-基于激光雷达点云的三维目标检测
格图素书
目标检测人工智能计算机视觉
目录前言图像目标检测算法研究现状点云目标检测算法研究现状基于投影图的方法基于体素的方法基于点云的多模态融合方法2地面点云滤波及神经网络2.1目标检测数据集及采集设备2.1.1KITTI数据集2.1.2车载激光雷达2.2地面点云滤波算法2.2.1RANSAC算法2.2.2CSF算法本文篇幅较长,分为上下两篇,下篇详见基于激光雷达点云的三维目标检测(续)前言近几年来,在计算机视觉领域,利用深度学习卷积
- 深度学习中的异构特征介绍
赫连达
深度学习人工智能
深度学习,特别是现在的大模型,数据永远是最紧要的基础和前提。数据中有大量的各种各样的特征,这些特征类型不同、来源不同,因此称之为”异构特征“。这些特征没有一个明确的结构来描述它们之间的关系,这些特征的多样性和复杂性给数据处理和分析带来了挑战。这些特征包括:高基数ids:每个实体的唯一标识。交叉特征:两个或多个特征之间的组合关系。计数特征:某个特征出现的次数。比例特征:某个特征在整体中的占比。异构特
- (4-8)基于DeepSeekMoE架构的DeepSeek-V3:测试模型
码农三叔
训练RAG多模态)架构transformerdeekseek人工智能大模型
4.8测试模型DeepSeek-V3是一款基于PyTorch的深度学习模型,主要用于文本生成任务。在加载模型时,首先需要从指定路径加载模型的配置文件和预训练权重。加载完成后,模型被设置为评估模式,并移动到GPU上以加速推理过程。在生成文本时,用户可以输入提示文本,模型会根据这些提示生成相应的文本输出。生成过程支持交互式输入和批量处理两种模式,用户可以根据需要选择适合的方式进行文本生成。此外,模型的
- 人工智能 - TensorRT与DeepDP终极指南:释放GPU潜能的深度学习推理优化之道
天机️灵韵
具身智能VLA人工智能人工智能算法深度学习pytorch
TensorRTTensorRT(TensorRuntime)是英伟达(NVIDIA)推出的高性能深度学习推理(Inference)优化器和运行时库,专为在NVIDIAGPU上高效部署深度学习模型而设计。它通过模型压缩、计算图优化、硬件级加速等技术,显著提升推理速度并降低资源消耗,广泛应用于自动驾驶、工业检测、实时视频分析等对延迟敏感的领域。一、TensorRT的核心功能模型优化与加速层融合(La
- AIGC论文查重和传统论文查重有什么区别?
真不二价825
论文查重AI论文写作AIGC论文查重
AIGC论文查重和传统论文查重在多个方面存在显著区别,以下是对两者的详细比较:一、检测目标和技术原理AIGC论文查重检测目标:主要用于检测和分析文本内容是否由AI生成,特别是在要求提供真实人类经验的领域,如新闻发布、文学创作等。技术原理:主要利用自然语言处理和深度学习技术,分析文本的风格、语法结构和语义连贯性,以判断内容是否可能由AI模型产生。传统论文查重检测目标:主要检测论文中是否存在抄袭或剽窃
- PyTorch安装与环境配置终极指南:从零搭建高效深度学习开发环境(一)
WHCIS
pythonpytorch人工智能深度学习机器学习
一、环境搭建的核心意义与准备工作1.1深度学习环境的核心挑战深度学习开发环境涉及复杂的软件栈依赖关系:硬件兼容性:GPU型号(NVIDIA系列)与CUDA版本的匹配软件依赖链:Python版本→PyTorch版本→CUDA驱动→cuDNN加速库环境隔离需求:不同项目可能依赖冲突的库版本1.2硬件准备清单硬件类型最低要求推荐配置CPU4核8核以上内存8GB32GB+GPU支持CUDANVIDIART
- 【梯度下降算法】
蝉叫醒了夏天
机器学习算法
梯度下降算法:第一章梯度下降的历史沿革1.1优化方法的演进脉络从17世纪牛顿时代的数值解法,到20世纪最优控制理论的发展,直至现代机器学习对优化算法的特殊需求,梯度下降算法在数学优化史上占据重要地位。1947年FrankRosenblatt在感知机研究中首次系统应用梯度下降思想1.2机器学习时代的复兴21世纪深度学习革命使梯度下降算法获得新生:2006年Hinton团队在深度信念网络中的突破应用2
- 深度学习基础-onnxruntime推理模型
yuweififi
深度学习人工智能
以下是一个完整的示例,展示如何加载ONNX模型、获取模型信息并运行推理:importonnxruntimeimportnumpyasnp#模型路径bev_head_onnx_path="path/to/your/bev_head.onnx"#加载模型session=onnxruntime.InferenceSession(bev_head_onnx_path)#获取模型元信息model_meta=
- 基于大模型的Text2SQL微调的实战教程(二)
herosunly
AIGCText2SQL微调实战教程
大家好,我是herosunly。985院校硕士毕业,现担任算法研究员一职,热衷于机器学习算法研究与应用。曾获得阿里云天池比赛第一名,CCF比赛第二名,科大讯飞比赛第三名。拥有多项发明专利。对机器学习和深度学习拥有自己独到的见解。曾经辅导过若干个非计算机专业的学生进入到算法行业就业。希望和大家一起成长进步。 本文主要介绍了基于大模型的Text2SQL微调的实战教程(二),希望对学习大语言模型的
- PHP,安卓,UI,java,linux视频教程合集
cocos2d-x小菜
javaUIPHPandroidlinux
╔-----------------------------------╗┆
- 各表中的列名必须唯一。在表 'dbo.XXX' 中多次指定了列名 'XXX'。
bozch
.net.net mvc
在.net mvc5中,在执行某一操作的时候,出现了如下错误:
各表中的列名必须唯一。在表 'dbo.XXX' 中多次指定了列名 'XXX'。
经查询当前的操作与错误内容无关,经过对错误信息的排查发现,事故出现在数据库迁移上。
回想过去: 在迁移之前已经对数据库进行了添加字段操作,再次进行迁移插入XXX字段的时候,就会提示如上错误。
&
- Java 对象大小的计算
e200702084
java
Java对象的大小
如何计算一个对象的大小呢?
 
- Mybatis Spring
171815164
mybatis
ApplicationContext ac = new ClassPathXmlApplicationContext("applicationContext.xml");
CustomerService userService = (CustomerService) ac.getBean("customerService");
Customer cust
- JVM 不稳定参数
g21121
jvm
-XX 参数被称为不稳定参数,之所以这么叫是因为此类参数的设置很容易引起JVM 性能上的差异,使JVM 存在极大的不稳定性。当然这是在非合理设置的前提下,如果此类参数设置合理讲大大提高JVM 的性能及稳定性。 可以说“不稳定参数”
- 用户自动登录网站
永夜-极光
用户
1.目标:实现用户登录后,再次登录就自动登录,无需用户名和密码
2.思路:将用户的信息保存为cookie
每次用户访问网站,通过filter拦截所有请求,在filter中读取所有的cookie,如果找到了保存登录信息的cookie,那么在cookie中读取登录信息,然后直接
- centos7 安装后失去win7的引导记录
程序员是怎么炼成的
操作系统
1.使用root身份(必须)打开 /boot/grub2/grub.cfg 2.找到 ### BEGIN /etc/grub.d/30_os-prober ### 在后面添加 menuentry "Windows 7 (loader) (on /dev/sda1)" { 
- Oracle 10g 官方中文安装帮助文档以及Oracle官方中文教程文档下载
aijuans
oracle
Oracle 10g 官方中文安装帮助文档下载:http://download.csdn.net/tag/Oracle%E4%B8%AD%E6%96%87API%EF%BC%8COracle%E4%B8%AD%E6%96%87%E6%96%87%E6%A1%A3%EF%BC%8Coracle%E5%AD%A6%E4%B9%A0%E6%96%87%E6%A1%A3 Oracle 10g 官方中文教程
- JavaEE开源快速开发平台G4Studio_V3.2发布了
無為子
AOPoraclemysqljavaeeG4Studio
我非常高兴地宣布,今天我们最新的JavaEE开源快速开发平台G4Studio_V3.2版本已经正式发布。大家可以通过如下地址下载。
访问G4Studio网站
http://www.g4it.org
G4Studio_V3.2版本变更日志
功能新增
(1).新增了系统右下角滑出提示窗口功能。
(2).新增了文件资源的Zip压缩和解压缩
- Oracle常用的单行函数应用技巧总结
百合不是茶
日期函数转换函数(核心)数字函数通用函数(核心)字符函数
单行函数; 字符函数,数字函数,日期函数,转换函数(核心),通用函数(核心)
一:字符函数:
.UPPER(字符串) 将字符串转为大写
.LOWER (字符串) 将字符串转为小写
.INITCAP(字符串) 将首字母大写
.LENGTH (字符串) 字符串的长度
.REPLACE(字符串,'A','_') 将字符串字符A转换成_
- Mockito异常测试实例
bijian1013
java单元测试mockito
Mockito异常测试实例:
package com.bijian.study;
import static org.mockito.Mockito.mock;
import static org.mockito.Mockito.when;
import org.junit.Assert;
import org.junit.Test;
import org.mockito.
- GA与量子恒道统计
Bill_chen
JavaScript浏览器百度Google防火墙
前一阵子,统计**网址时,Google Analytics(GA) 和量子恒道统计(也称量子统计),数据有较大的偏差,仔细找相关资料研究了下,总结如下:
为何GA和量子网站统计(量子统计前身为雅虎统计)结果不同?
首先:没有一种网站统计工具能保证百分之百的准确出现该问题可能有以下几个原因:(1)不同的统计分析系统的算法机制不同;(2)统计代码放置的位置和前后
- 【Linux命令三】Top命令
bit1129
linux命令
Linux的Top命令类似于Windows的任务管理器,可以查看当前系统的运行情况,包括CPU、内存的使用情况等。如下是一个Top命令的执行结果:
top - 21:22:04 up 1 day, 23:49, 1 user, load average: 1.10, 1.66, 1.99
Tasks: 202 total, 4 running, 198 sl
- spring四种依赖注入方式
白糖_
spring
平常的java开发中,程序员在某个类中需要依赖其它类的方法,则通常是new一个依赖类再调用类实例的方法,这种开发存在的问题是new的类实例不好统一管理,spring提出了依赖注入的思想,即依赖类不由程序员实例化,而是通过spring容器帮我们new指定实例并且将实例注入到需要该对象的类中。依赖注入的另一种说法是“控制反转”,通俗的理解是:平常我们new一个实例,这个实例的控制权是我
- angular.injector
boyitech
AngularJSAngularJS API
angular.injector
描述: 创建一个injector对象, 调用injector对象的方法可以获得angular的service, 或者用来做依赖注入. 使用方法: angular.injector(modules, [strictDi]) 参数详解: Param Type Details mod
- java-同步访问一个数组Integer[10],生产者不断地往数组放入整数1000,数组满时等待;消费者不断地将数组里面的数置零,数组空时等待
bylijinnan
Integer
public class PC {
/**
* 题目:生产者-消费者。
* 同步访问一个数组Integer[10],生产者不断地往数组放入整数1000,数组满时等待;消费者不断地将数组里面的数置零,数组空时等待。
*/
private static final Integer[] val=new Integer[10];
private static
- 使用Struts2.2.1配置
Chen.H
apachespringWebxmlstruts
Struts2.2.1 需要如下 jar包: commons-fileupload-1.2.1.jar commons-io-1.3.2.jar commons-logging-1.0.4.jar freemarker-2.3.16.jar javassist-3.7.ga.jar ognl-3.0.jar spring.jar
struts2-core-2.2.1.jar struts2-sp
- [职业与教育]青春之歌
comsci
教育
每个人都有自己的青春之歌............但是我要说的却不是青春...
大家如果在自己的职业生涯没有给自己以后创业留一点点机会,仅仅凭学历和人脉关系,是难以在竞争激烈的市场中生存下去的....
&nbs
- oracle连接(join)中使用using关键字
daizj
JOINoraclesqlusing
在oracle连接(join)中使用using关键字
34. View the Exhibit and examine the structure of the ORDERS and ORDER_ITEMS tables.
Evaluate the following SQL statement:
SELECT oi.order_id, product_id, order_date
FRO
- NIO示例
daysinsun
nio
NIO服务端代码:
public class NIOServer {
private Selector selector;
public void startServer(int port) throws IOException {
ServerSocketChannel serverChannel = ServerSocketChannel.open(
- C语言学习homework1
dcj3sjt126com
chomework
0、 课堂练习做完
1、使用sizeof计算出你所知道的所有的类型占用的空间。
int x;
sizeof(x);
sizeof(int);
# include <stdio.h>
int main(void)
{
int x1;
char x2;
double x3;
float x4;
printf(&quo
- select in order by , mysql排序
dcj3sjt126com
mysql
If i select like this:
SELECT id FROM users WHERE id IN(3,4,8,1);
This by default will select users in this order
1,3,4,8,
I would like to select them in the same order that i put IN() values so:
- 页面校验-新建项目
fanxiaolong
页面校验
$(document).ready(
function() {
var flag = true;
$('#changeform').submit(function() {
var projectScValNull = true;
var s ="";
var parent_id = $("#parent_id").v
- Ehcache(02)——ehcache.xml简介
234390216
ehcacheehcache.xml简介
ehcache.xml简介
ehcache.xml文件是用来定义Ehcache的配置信息的,更准确的来说它是定义CacheManager的配置信息的。根据之前我们在《Ehcache简介》一文中对CacheManager的介绍我们知道一切Ehcache的应用都是从CacheManager开始的。在不指定配置信
- junit 4.11中三个新功能
jackyrong
java
junit 4.11中两个新增的功能,首先是注解中可以参数化,比如
import static org.junit.Assert.assertEquals;
import java.util.Arrays;
import org.junit.Test;
import org.junit.runner.RunWith;
import org.junit.runn
- 国外程序员爱用苹果Mac电脑的10大理由
php教程分享
windowsPHPunixMicrosoftperl
Mac 在国外很受欢迎,尤其是在 设计/web开发/IT 人员圈子里。普通用户喜欢 Mac 可以理解,毕竟 Mac 设计美观,简单好用,没有病毒。那么为什么专业人士也对 Mac 情有独钟呢?从个人使用经验来看我想有下面几个原因:
1、Mac OS X 是基于 Unix 的
这一点太重要了,尤其是对开发人员,至少对于我来说很重要,这意味着Unix 下一堆好用的工具都可以随手捡到。如果你是个 wi
- 位运算、异或的实际应用
wenjinglian
位运算
一. 位操作基础,用一张表描述位操作符的应用规则并详细解释。
二. 常用位操作小技巧,有判断奇偶、交换两数、变换符号、求绝对值。
三. 位操作与空间压缩,针对筛素数进行空间压缩。
&n
- weblogic部署项目出现的一些问题(持续补充中……)
Everyday都不同
weblogic部署失败
好吧,weblogic的问题确实……
问题一:
org.springframework.beans.factory.BeanDefinitionStoreException: Failed to read candidate component class: URL [zip:E:/weblogic/user_projects/domains/base_domain/serve
- tomcat7性能调优(01)
toknowme
tomcat7
Tomcat优化: 1、最大连接数最大线程等设置
<Connector port="8082" protocol="HTTP/1.1"
useBodyEncodingForURI="t
- PO VO DAO DTO BO TO概念与区别
xp9802
javaDAO设计模式bean领域模型
O/R Mapping 是 Object Relational Mapping(对象关系映射)的缩写。通俗点讲,就是将对象与关系数据库绑定,用对象来表示关系数据。在O/R Mapping的世界里,有两个基本的也是重要的东东需要了解,即VO,PO。
它们的关系应该是相互独立的,一个VO可以只是PO的部分,也可以是多个PO构成,同样也可以等同于一个PO(指的是他们的属性)。这样,PO独立出来,数据持