深度学习入门(3)之使用Tensorflow深度学习框架训练MNIST数据集的简单代码

使用Tensorflow深度学习框架构建CNN卷积神经网络训练MNIST数据集的完整源码

MNIST数据集

MNIST数据集是从NIST的Special Database 3(SD-3)和Special Database 1(SD-1)构建而来。Yann LeCun等人从SD-1和SD-3中各取一半数据作为MNIST训练集和测试集,其中训练集来自250位不同的标注员,且训练集和测试集的标注员完全不同。

MNIST数据集的发布,吸引了大量科学家训练模型。1998年,LeCun分别用单层线性分类器、多层感知器(Multilayer Perceptron, MLP)和多层卷积神经网络LeNet进行实验,使得测试集的误差不断下降(从12%下降到0.7%)。在研究过程中,LeCun提出了卷积神经网络(Convolutional Neural Network,CNN),大幅度地提高了手写字符的识别能力,也因此成为了深度学习领域的奠基人之一。

如今在深度学习领域,卷积神经网络占据了至关重要的地位,从最早LeCun提出的简单LeNet,到如今ImageNet大赛上的优胜模型VGGNet、GoogLeNet、ResNet等,人们在图像分类领域,利用卷积神经网络得到了一系列惊人的结果。

手写数字识别的模型是深度学习中相对简单的模型,非常适用初学者。正如学习编程时,我们输入的第一个程序是打印“Hello World!”一样。

步骤:

1.使用 tf.keras.datasets 获得数据集并预处理

mnist = tf.keras.datasets.mnist 将从网络上自动下载 MNIST 数据集并加载。在 TensorFlow 中,图像数据集的一种典型表示是 [图像数目,长,宽,色彩通道数] 的四维张量。在上面的 DataLoader 类中, self.train_data 和 self.test_data 分别载入了 60,000 和 10,000 张大小为 28*28 的手写体数字图片。由于这里读入的是灰度图片,色彩通道数为 1(彩色 RGB 图像色彩通道数为 3),所以我们使用 np.expand_dims() 函数为图像数据手动在最后添加一维通道。

2.使用 tf.keras.Model 和 tf.keras.layers 构建简单的CNN卷积神经网络模型

卷积神经网络 (Convolutional Neural Network, CNN)是一种结构类似于人类或动物的 视觉系统 的人工神经网络,包含一个或多个卷积层(Convolutional Layer)、池化层(Pooling Layer)和全连接层(Fully-connected Layer)。

3.构建模型训练流程,使用 tf.keras.losses 计算损失函数,并使用 tf.keras.optimizer 优化模型

    迭代进行以下步骤:

从 DataLoader 中随机取一批训练数据;

将这批数据送入模型,计算出模型的预测值;

将模型预测值与真实值进行比较,计算损失函数(loss)。这里使用 tf.keras.losses 中的交叉熵函数作为损失函数;

计算损失函数关于模型变量的导数;

将求出的导数值传入优化器,使用优化器的 apply_gradients 方法更新模型参数以最小化损失函数
构建模型评估流程

4.使用 tf.keras.metrics 计算评估指标

最后,我们使用测试集评估模型的性能。这里,我们使用 tf.keras.metrics 中的 SparseCategoricalAccuracy 评估器来评估模型在测试集上的性能,该评估器能够对模型预测的结果与真实结果进行比较,并输出预测正确的样本数占总样本数的比例。我们迭代测试数据集,每次通过 update_state() 方法向评估器输入两个参数: y_pred 和 y_true ,即模型预测出的结果和真实结果。评估器具有内部变量来保存当前评估指标相关的参数数值(例如当前已传入的累计样本数和当前预测正确的样本数)。迭代结束后,我们使用 result() 方法输出最终的评估指标值(预测正确的样本数占总样本数的比例)。
实例化了一个 tf.keras.metrics.SparseCategoricalAccuracy 评估器,并使用 For 循环迭代分批次传入了测试集数据的预测结果与真实结果,并输出训练后的模型在测试数据集上的准确率。

上源码

import tensorflow as tf
import numpy as np
class MNISTLoader():
    def __init__(self):
        mnist = tf.keras.datasets.mnist
        (self.train_data, self.train_label), (self.test_data, self.test_label) = mnist.load_data()
        # MNIST中的图像默认为uint8(0-255的数字)。以下代码将其归一化到0-1之间的浮点数,并在最后增加一维作为颜色通道
        self.train_data = np.expand_dims(self.train_data.astype(np.float32) / 255.0, axis=-1)      # [60000, 28, 28, 1]
        self.test_data = np.expand_dims(self.test_data.astype(np.float32) / 255.0, axis=-1)        # [10000, 28, 28, 1]
        self.train_label = self.train_label.astype(np.int32)    # [60000]
        self.test_label = self.test_label.astype(np.int32)      # [10000]
        self.num_train_data, self.num_test_data = self.train_data.shape[0], self.test_data.shape[0]

    def get_batch(self, batch_size):
        # 从数据集中随机取出batch_size个元素并返回
        index = np.random.randint(0, self.num_train_data, batch_size)
        return self.train_data[index, :], self.train_label[index]

class CNN(tf.keras.Model):
    def __init__(self):
        super().__init__()
        self.conv1 = tf.keras.layers.Conv2D(
            filters=32,             # 卷积层神经元(卷积核)数目
            kernel_size=[5, 5],     # 感受野大小
            padding='same',         # padding策略(vaild 或 same)
            activation=tf.nn.relu   # 激活函数
        )
        self.pool1 = tf.keras.layers.MaxPool2D(pool_size=[2, 2], strides=2)
        self.conv2 = tf.keras.layers.Conv2D(
            filters=64,
            kernel_size=[5, 5],
            padding='same',
            activation=tf.nn.relu
        )
        self.pool2 = tf.keras.layers.MaxPool2D(pool_size=[2, 2], strides=2)
        self.flatten = tf.keras.layers.Reshape(target_shape=(7 * 7 * 64,))
        self.dense1 = tf.keras.layers.Dense(units=1024, activation=tf.nn.relu)
        self.dense2 = tf.keras.layers.Dense(units=10)

    def call(self, inputs):
        x = self.conv1(inputs)                  # [batch_size, 28, 28, 32]
        x = self.pool1(x)                       # [batch_size, 14, 14, 32]
        x = self.conv2(x)                       # [batch_size, 14, 14, 64]
        x = self.pool2(x)                       # [batch_size, 7, 7, 64]
        x = self.flatten(x)                     # [batch_size, 7 * 7 * 64]
        x = self.dense1(x)                      # [batch_size, 1024]
        x = self.dense2(x)                      # [batch_size, 10]
        output = tf.nn.softmax(x)
        return output

num_epochs = 5
batch_size = 50
learning_rate = 0.001

model = CNN()
data_loader = MNISTLoader()
optimizer = tf.keras.optimizers.Adam(learning_rate=learning_rate)

num_batches = int(data_loader.num_train_data // batch_size * num_epochs)
for batch_index in range(num_batches):
    X, y = data_loader.get_batch(batch_size)
    with tf.GradientTape() as tape:
        y_pred = model(X)
        loss = tf.keras.losses.sparse_categorical_crossentropy(y_true=y, y_pred=y_pred)
        loss = tf.reduce_mean(loss)
        print("batch %d: loss %f" % (batch_index, loss.numpy()))
    grads = tape.gradient(loss, model.variables)
    optimizer.apply_gradients(grads_and_vars=zip(grads, model.variables))

sparse_categorical_accuracy = tf.keras.metrics.SparseCategoricalAccuracy()
num_batches = int(data_loader.num_test_data // batch_size)
for batch_index in range(num_batches):
    start_index, end_index = batch_index * batch_size, (batch_index + 1) * batch_size
    y_pred = model.predict(data_loader.test_data[start_index: end_index])
    sparse_categorical_accuracy.update_state(y_true=data_loader.test_label[start_index: end_index], y_pred=y_pred)
print("test accuracy: %f" % sparse_categorical_accuracy.result())

运行结果:

深度学习入门(3)之使用Tensorflow深度学习框架训练MNIST数据集的简单代码_第1张图片
深度学习入门(3)之使用Tensorflow深度学习框架训练MNIST数据集的简单代码_第2张图片
可以看到随着训练的进行,损失值越来越低。这样一个简单的CNN网络准确率就可以达到99.05%,可见卷积神经网络在图像处理上的强大。

你可能感兴趣的:(深度学习入门教程,tensorflow,机器学习,神经网络,深度学习)