- 论文学习_SoK: An Essential Guide For Using Malware Sandboxes In Security Applications: Challenges, Pitfa
kitsch0x97
学习
0.文章概述恶意软件沙箱尽管在安全应用程序中带来许多优势,但其复杂的选择、配置和使用过程常让新用户不知所措,甚至可能导致错误的部署,进而对安全分析结果产生负面影响。目前,缺乏系统化的指导来帮助用户正确选择和应用沙箱工具,这种知识空白阻碍了沙箱在不同研究领域中的有效应用。为了填补这一知识空白,研究团队系统分析了84篇关于x86/64恶意软件沙箱的学术论文,并提出了一种新颖的框架,以简化沙箱组件和操作
- 论文学习笔记 | AAAI-2022 TS2Vec:实现时间序列通用表示
叶庭云
人工智能学习之路时间序列表征学习TS2Vec分层对比学习上下文一致性正样本选择策略
CSDN叶庭云:https://yetingyun.blog.csdn.net/APA引用格式:Yue,Z.,Wang,Y.,Duan,J.,Yang,T.,Huang,C.,Tong,Y.,&Xu,B.(2022,June).TS2Vec:Towardsuniversalrepresentationoftimeseries.InProceedingsoftheAAAIConferenceonAr
- 论文学习——基于双种群进化的不连续和不规则可行域动态约束多目标优化
臭东西的学习笔记
学习
论文题目:Dual-PopulationEvolutionBasedDynamicConstrainedMultiobjectiveOptimizationWithDiscontinuousandIrregularFeasibleRegions基于双种群进化的不连续和不规则可行域动态约束多目标优化(XiaoxuJiang,QingdaChen,Member,IEEE,JinliangDing,Se
- 论文学习_Directed Greybox Fuzzing
kitsch0x97
学习
摘要:现有的灰盒模糊测试工具(GreyboxFuzzers,简称GF)在测试引导性方面存在明显不足,比如难以有效地将测试引导至特定的高风险变更或补丁、关键系统调用、危险代码位置,或是试图重现漏洞时涉及的堆栈追踪中的相关函数。为此,有研究者提出了“定向灰盒模糊测试”(DirectedGreyboxFuzzing,简称DGF)的概念,其核心目标是生成能高效触达指定程序位置的输入。为实现这一目标,他们设
- 论文学习 Generative Modeling by Estimating Gradients of the Data Distribution
Lyrig~
神经网络学习机器学习
论文学习GenerativeModelingbyEstimatingGradientsoftheDataDistribution前言前情提要分数匹配朗格文动力学核心问题流形假设产生的问题文章的解决方案前言个人认为,这篇SongYang大佬的文章虽然被网上很多人吹,然而我们还是应该避免捧杀,认真了解一下其文章的内容和思想,以及试图理解他是如何想到这种思路的。通过其论文引用,实际上也能发现Song神的
- 读论文学习——相位恢复和零像素填充
tt555555555555
深度学习学习笔记学习
文章目录相位恢复算法Gerchberg-Saxton(GS)算法基本原理算法步骤**优缺点**角谱迭代(AngularSpectrumIteration,ASI)算法基本原理**算法步骤****ASI的改进****优缺点**基于强度传输方程(TIE)的相位恢复基本原理**算法步骤****优缺点****三种算法的对比****总结**零像素填充1.增加图像的频谱分量2.减少衍射失真3.提高相位梯度下降
- 《FFCA-YOLO》论文学习,面向遥感图像的小目标检测最新方法
张三不嚣张
1024程序员节目标检测人工智能深度学习神经网络YOLO计算机视觉
一、概要论文全称:《FFCA-YOLOforSmallObjectDetectioninRemoteSensingImages》发表期刊:IEEETRANSACTIONSONGEOSCIENCEANDREMOTESENSING.(TGRS)2024论文地址:FFCA-YOLOforSmallObjectDetectioninRemoteSensingImages|IEEEJournals&Maga
- 论文学习11:Boundary-Guided Camouflaged Object Detection
zl29
学习目标检测人工智能
代码来源GitHub-thograce/BGNet:Boundary-GuidedCamouflagedObjectDetection模块作用BGNet利用额外的目标相关边缘语义信息来引导COD任务的特征学习,从而强制模型生成能够突出目标结构的特征。这一机制有助于提高目标边界的精准定位,从而提升伪装目标的检测性能。模块结构BGNet的架构基于Res2Net-50,编码器提取多级特征,解码器通过EA
- 论文学习:基于机器学习的光声图像分析1
superace7911
基于机器学习的光声图像处理机器学习人工智能图像处理
3/25——3/31期间论文学习笔记,关于基于机器学习的光声图像分析的6篇1区论文血管结构模拟&分割:Quantificationofvascularnetworksinphotoacousticmesoscopy链接数据集链接摘要这篇论文提出了一种新的方法,利用中观光声成像(MesoscopicPhotoacousticImaging,PAI)技术和高级图像分析技术,来非侵入性地定量化和分析活体
- GAN开山之作--Generative Adversarial Nets
星空彡
深度学习机器学习神经网络
GAN开山之作–GenerativeAdversarialNets最近对GAN比较有兴趣,所以开个坑记录一下读论文学习的知识。这是本专栏的第一篇论文,所以笔者认为解析GAN的开山之作——GenerativeAdversarialNets[1]是非常有必要的。有关数学推导部分本文借鉴了深度之眼的b站发布的视频[2]。本文并不是逐字翻译,主要是写笔者对这篇论文的见解思考,其中难免会有错的地方,欢迎讨论
- 论文学习3:深度学习增强的光声成像(PAI)的最新进展(综述)
superace7911
基于机器学习的光声图像处理机器学习图像处理
原文链接有空可以细看,这里中列出了文中提到的部分研究结果写作大纲1.引言光声成像(PAI)的介绍,它结合了光学和超声成像的优点,为生物医学成像提供了一种有前景的模态。深度学习(DL)在解决PAI中存在的技术限制(如硬件限制、生物特征信息缺乏等)方面的潜力。2.DL方法的原理介绍DL的子集:监督学习、无监督学习和强化学习。详细说明代表性DL架构:卷积神经网络(CNN)、U-形神经网络(U-Net)和
- 论文学习笔记 VMamba: Visual State Space Model
Wils0nEdwards
学习笔记
概览这篇论文的动机源于在计算机视觉领域设计计算高效的网络架构的持续需求。当前的视觉模型如卷积神经网络(CNNs)和视觉Transformer(ViTs)在处理大规模视觉任务时展现出良好的表现,但都存在各自的局限性。特别是,ViTs尽管在处理大规模数据上具有优势,但其自注意力机制的二次复杂度对高分辨率图像处理时的计算成本极高。因此,研究者希望通过引入新的架构来降低这种复杂度,并提高视觉任务的效率。现
- 论文学习1----理解深度学习需要重新思考泛化Understanding deep learning requires rethinking generalization
夏洛的网
机器学习深度学习论文深度学习神经网络
——论文地址:Understandingdeeplearningrequiresrethinkinggeneralization1、有关新闻1.1新闻一:参考1:机器之心尽管深度人工神经网络规模庞大,但它们的训练表现和测试表现之间可以表现出非常小的差异。传统的思考是将小的泛化误差要么归结为模型族的特性,要么就认为与训练过程中的正则化技术有关。通过广泛的系统性实验,我们表明这些传统的方法并不能解释大
- 半监督语义分割论文学习记录
西瓜真的很皮啊
半监督语义分割深度学习机器学习人工智能
Semi-SupervisedSemanticSegmentationwithCross-ConsistencyTraining1.1motivation一致性训练的目的是在应用于输入的小扰动上增强模型预测的不变性。因此,学习的模型将对这样的小变化具有鲁棒性。一致性训练的有效性在很大程度上取决于数据分布的行为,即集群假设,其中类必须由低密度区域分隔。在语义分割中,在输入中,我们没有观察到低密度区域
- 2019-1-27晨间日记
紫薇忘了水葫芦
在柳州的第二天起床:八点半左右天气:晴心情:好像很复杂,一会儿开心一会儿不开心纪念日:参加了晗大姐的婚礼任务清单昨日完成的任务,最重要的三件事:⒈把之前的论文题目整理了一遍⒉参加了婚礼⒊送了礼物改进:要静下来多看些书做些运动,多思考。习惯养成:早睡早起,饮食清淡周目标·完成进度开始读论文学习·信息·阅读阅读健康·饮食·锻炼饮食清淡,多锻炼人际·家人·朋友多联系工作·思考怎么把自己的工作做得更好最美
- 语义分割系列之FCN、DeeplabV1、V2、V3、V3Plus论文学习
Diros1g
学习深度学习计算机视觉
FCNFullyConvolutionalNetworks论文:FullyConvolutionalNetworksforSemanticSegmentation地址:https://openaccess.thecvf.com/content_cvpr_2015/papers/Long_Fully_Convolutional_Networks_2015_CVPR_paper.pdf特点:用全卷积替
- 论文学习笔记 POSEIDON: Privacy-Preserving Federated Neural Network Learning
JiangChSo
论文学习深度学习机器学习神经网络算法分布式
论文学习笔记POSEIDON:Privacy-PreservingFederatedNeuralNetworkLearningNDSS2021录用文章目录论文学习笔记POSEIDON:Privacy-PreservingFederatedNeuralNetworkLearning一、机器学习1.机器学习(ML)中的挑战2.隐私保护机器学习(PPML)二、POSEIDON方案1.系统和威胁模型2.方
- 论文学习——Vector Quantized Diffusion Model for Text-to-Image Synthesis
客院载论
音频生成学习
文章目录引言正文Abstract文章的核心VQ潜在空间适合文本转图片生成VQDiffusion的比起自回归和GAN的其他模型的成果IntroductionNLP的成功给图片生成的启发自回归模型的单向误差解释预测误差累积VQDiffusion能够解决预测误差累计和单向误差两个问题解决单向误差的方式——每一次预测都是考虑所有token的上下文信息解决错误累积的方式——使用基于掩码和替换的扩散策略模型测
- Python论文学习 -- 第二章 --- Python基础知识
Metallic Cat
学习
1.cmd命令器中如果想终止命令的话可以在终止行输入exit()函数调用停止命令一.字面量二.注释---对代码进行解释说明1.在print函数中:print(a,"asd",c)输出的结果为a变量对应的值+asd+c变量对应的值如:则输出的结果为:往type()函数中输入数据,它会返回数据的类型给我们,然后我们可以用print()函数将数据类型打出来1.值得注意的是变量本身是没有类型的,它只是一个
- 论文学习笔记:PoseFix: Model-agnostic General Human Pose Refinement Network
wangyc1208
姿态估计
论文:https://arxiv.org/abs/1812.03595代码:https://github.com/mks0601/PoseFix_RELEASE—————————————————————————————————————————————————目标:多人姿态估计:本篇论文主要工作是利用一个人体姿势优化网络,从输入图像和姿势中对人体姿态进行优化。大概的效果如下图:———————————
- 2021-9-23晨间日记
言二yaner
今天是什么日子起床:7:40就寝:23:00天气:美好心情:美好纪念日:无任务清单昨日完成的任务,最重要的三件事:投稿改进:想到就做到习惯养成:专注自己,提升自己周目标·完成进度准备再写一篇论文学习·信息·阅读多阅读,多学习健康·饮食·锻炼早饭:小米粥,鸡蛋,烧麦中饭:真味卤,杨枝甘露晚饭:黑米粥锻炼:一小时左右人际·家人·朋友一切都是最好的安排,虽然没有过去,但也有属于自己的收获工作·思考凡事早
- 论文学习记录之Deep-learning seismic full-waveform inversion for realistic structuralmodels
摘星星的屋顶
论文深度学习人工智能
一、ABSTRACT—摘要标题:Deep-learningseismicfull-waveforminversionforrealisticstructuralmodels(用于真实结构模型的深度学习地震全波形反演)作者:BinLiu1,SenlinYang2,YuxiaoRen2,XinjiXu3,PengJiang2,andYangkangChen4(和SeisInvNet有共同作者,应该是同
- 论文学习记录之SeisInvNet(Deep-Learning Inversion of Seismic Data)
摘星星的屋顶
论文人工智能
目录1INTRODUCTION—介绍2RELATEDWORKS—相关作品3METHODOLOGYANDIMPLEMENTATION—方法和执行3.1方法3.2执行4EXPERIMENTS—实验4.1数据集准备4.2实验设置4.3基线模型4.4定向比较4.5定量比较4.6机理研究5CONCLUSION—结论1INTRODUCTION—介绍地震勘探是根据地震波在大地中的传播规律来确定地下地层结构的一种
- 基于变长频带选择的JPEG图像可逆数据隐藏-文献学习
凌峰的博客
学习算法计算机视觉
论文学习原文题目:ReversibleDataHidingofJPEGImageBasedonAdaptiveFrequencyBandLength发表期刊:TCSVT2023(中科院1区)作者:NingxiongMao,HongjieHe,FanChen,YuanYuan,LingfengQu摘要JPEG图像在互联网上被广泛使用。基于quantifieddiscretecosinetransfo
- BASNet:Boundary-aware salient object detection
Kun Li
应用算法目标检测计算机视觉
CVPR2019开源论文|BASNet:关注边界的显著性检测本文提出一种基于深度监督学习的前景提取构架BASNet,其在边缘感知上有优异的表现。https://mp.weixin.qq.com/s/fjq4UyDMN9Z9lvNZ7aNLWABASNet:Boundary-AwareSalientObjectDetection论文学习_basnet:boundary-awaresalientobj
- Nerf-Wild神经辐射场论文学习笔记 Neural Radiance Fields for Unconstrained Photo Collections
出门吃三碗饭
Nerf学习记录三维重建学习笔记
前言:本文为记录自己在Nerf学习道路的一些笔记,包括对论文以及其代码的思考内容。公众号:AI知识物语B站后续同步更新讲解本篇文章主要针对其数学公式来学习其内容,欢迎批评指正!!!(代码下篇出)1:摘要提出基于学习(learning-based)方法,使用野外照片的非结构化集合(unstructuredcollectionsofin-the-wildphotographs)来合成复杂场景。之前的N
- GroupMixFormer:Advancing Vision Transformers with Group-Mix Attention论文学习笔记
athrunsunny
Transformer学习笔记深度学习计算机视觉transformer
论文地址:https://arxiv.org/pdf/2311.15157.pdf代码地址:https://github.com/AILab-CVC/GroupMixFormer摘要:ViT已被证明可以通过使用多头自注意力(MHSA)对远程依赖关系进行建模来增强视觉识别,这通常被表述为Query-Key-Value计算。但是,从“Query”和“Key”生成的注意力图仅捕获单个粒度的token-t
- 论文学习——基于查询的workload预测(CMU)
_zhj
机器学习数据库
一、简介论文题目:Query-basedWorkloadForecastingforSelf-DrivingDatabaseManagementSystems发表在2018SIGMOD,来自cmu的数据库组(这个组真的很厉害)这篇论文主要讲数据库workload预测的问题。因为要实现数据库self-driving(如选择合适的时机在合适的列上自动创建索引),应该根据将要到来的查询对数据库进行优化,
- 第六十八周周报
童、一
周报深度学习
学习目标:项目论文学习时间:2023.12.23-2023.12.29学习产出:一、项目这周后两天在根据吉安方面的需求优化SQL,提升性能二、论文这周周六在杨老师的带领下仔细改了论文前两段,后面几天自己把剩下的改完了,目前还在给杨老师看。实验方面,由于LSUN一直跑不出好的效果,已经转为STL10和CelebA,预计得下周才能出结果。其他时间都在搞开题报告的东西。
- DN-DETR论文学习
彭祥.
DETR系列学习深度学习计算机视觉
摘要本文提出了一种新颖的去噪训练方法,以加快DETR(DEtectionTRansformer)训练,并加深了对类DETR方法的慢收敛问题的理解。我们表明,缓慢收敛是由于二分图匹配的不稳定性导致早期训练阶段的优化目标不一致。为了解决这个问题,除了匈牙利损失之外,我们的方法还向Transformer解码器馈送了带有噪声的GT边界框,并训练模型重建原始框,从而有效地降低了二分图匹配难度,并加快了收敛速
- 关于旗正规则引擎中的MD5加密问题
何必如此
jspMD5规则加密
一般情况下,为了防止个人隐私的泄露,我们都会对用户登录密码进行加密,使数据库相应字段保存的是加密后的字符串,而非原始密码。
在旗正规则引擎中,通过外部调用,可以实现MD5的加密,具体步骤如下:
1.在对象库中选择外部调用,选择“com.flagleader.util.MD5”,在子选项中选择“com.flagleader.util.MD5.getMD5ofStr({arg1})”;
2.在规
- 【Spark101】Scala Promise/Future在Spark中的应用
bit1129
Promise
Promise和Future是Scala用于异步调用并实现结果汇集的并发原语,Scala的Future同JUC里面的Future接口含义相同,Promise理解起来就有些绕。等有时间了再仔细的研究下Promise和Future的语义以及应用场景,具体参见Scala在线文档:http://docs.scala-lang.org/sips/completed/futures-promises.html
- spark sql 访问hive数据的配置详解
daizj
spark sqlhivethriftserver
spark sql 能够通过thriftserver 访问hive数据,默认spark编译的版本是不支持访问hive,因为hive依赖比较多,因此打的包中不包含hive和thriftserver,因此需要自己下载源码进行编译,将hive,thriftserver打包进去才能够访问,详细配置步骤如下:
1、下载源码
2、下载Maven,并配置
此配置简单,就略过
- HTTP 协议通信
周凡杨
javahttpclienthttp通信
一:简介
HTTPCLIENT,通过JAVA基于HTTP协议进行点与点间的通信!
二: 代码举例
测试类:
import java
- java unix时间戳转换
g21121
java
把java时间戳转换成unix时间戳:
Timestamp appointTime=Timestamp.valueOf(new SimpleDateFormat("yyyy-MM-dd HH:mm:ss").format(new Date()))
SimpleDateFormat df = new SimpleDateFormat("yyyy-MM-dd hh:m
- web报表工具FineReport常用函数的用法总结(报表函数)
老A不折腾
web报表finereport总结
说明:本次总结中,凡是以tableName或viewName作为参数因子的。函数在调用的时候均按照先从私有数据源中查找,然后再从公有数据源中查找的顺序。
CLASS
CLASS(object):返回object对象的所属的类。
CNMONEY
CNMONEY(number,unit)返回人民币大写。
number:需要转换的数值型的数。
unit:单位,
- java jni调用c++ 代码 报错
墙头上一根草
javaC++jni
#
# A fatal error has been detected by the Java Runtime Environment:
#
# EXCEPTION_ACCESS_VIOLATION (0xc0000005) at pc=0x00000000777c3290, pid=5632, tid=6656
#
# JRE version: Java(TM) SE Ru
- Spring中事件处理de小技巧
aijuans
springSpring 教程Spring 实例Spring 入门Spring3
Spring 中提供一些Aware相关de接口,BeanFactoryAware、 ApplicationContextAware、ResourceLoaderAware、ServletContextAware等等,其中最常用到de匙ApplicationContextAware.实现ApplicationContextAwaredeBean,在Bean被初始后,将会被注入 Applicati
- linux shell ls脚本样例
annan211
linuxlinux ls源码linux 源码
#! /bin/sh -
#查找输入文件的路径
#在查找路径下寻找一个或多个原始文件或文件模式
# 查找路径由特定的环境变量所定义
#标准输出所产生的结果 通常是查找路径下找到的每个文件的第一个实体的完整路径
# 或是filename :not found 的标准错误输出。
#如果文件没有找到 则退出码为0
#否则 即为找不到的文件个数
#语法 pathfind [--
- List,Set,Map遍历方式 (收集的资源,值得看一下)
百合不是茶
listsetMap遍历方式
List特点:元素有放入顺序,元素可重复
Map特点:元素按键值对存储,无放入顺序
Set特点:元素无放入顺序,元素不可重复(注意:元素虽然无放入顺序,但是元素在set中的位置是有该元素的HashCode决定的,其位置其实是固定的)
List接口有三个实现类:LinkedList,ArrayList,Vector
LinkedList:底层基于链表实现,链表内存是散乱的,每一个元素存储本身
- 解决SimpleDateFormat的线程不安全问题的方法
bijian1013
javathread线程安全
在Java项目中,我们通常会自己写一个DateUtil类,处理日期和字符串的转换,如下所示:
public class DateUtil01 {
private SimpleDateFormat dateformat = new SimpleDateFormat("yyyy-MM-dd HH:mm:ss");
public void format(Date d
- http请求测试实例(采用fastjson解析)
bijian1013
http测试
在实际开发中,我们经常会去做http请求的开发,下面则是如何请求的单元测试小实例,仅供参考。
import java.util.HashMap;
import java.util.Map;
import org.apache.commons.httpclient.HttpClient;
import
- 【RPC框架Hessian三】Hessian 异常处理
bit1129
hessian
RPC异常处理概述
RPC异常处理指是,当客户端调用远端的服务,如果服务执行过程中发生异常,这个异常能否序列到客户端?
如果服务在执行过程中可能发生异常,那么在服务接口的声明中,就该声明该接口可能抛出的异常。
在Hessian中,服务器端发生异常,可以将异常信息从服务器端序列化到客户端,因为Exception本身是实现了Serializable的
- 【日志分析】日志分析工具
bit1129
日志分析
1. 网站日志实时分析工具 GoAccess
http://www.vpsee.com/2014/02/a-real-time-web-log-analyzer-goaccess/
2. 通过日志监控并收集 Java 应用程序性能数据(Perf4J)
http://www.ibm.com/developerworks/cn/java/j-lo-logforperf/
3.log.io
和
- nginx优化加强战斗力及遇到的坑解决
ronin47
nginx 优化
先说遇到个坑,第一个是负载问题,这个问题与架构有关,由于我设计架构多了两层,结果导致会话负载只转向一个。解决这样的问题思路有两个:一是改变负载策略,二是更改架构设计。
由于采用动静分离部署,而nginx又设计了静态,结果客户端去读nginx静态,访问量上来,页面加载很慢。解决:二者留其一。最好是保留apache服务器。
来以下优化:
- java-50-输入两棵二叉树A和B,判断树B是不是A的子结构
bylijinnan
java
思路来自:
http://zhedahht.blog.163.com/blog/static/25411174201011445550396/
import ljn.help.*;
public class HasSubtree {
/**Q50.
* 输入两棵二叉树A和B,判断树B是不是A的子结构。
例如,下图中的两棵树A和B,由于A中有一部分子树的结构和B是一
- mongoDB 备份与恢复
开窍的石头
mongDB备份与恢复
Mongodb导出与导入
1: 导入/导出可以操作的是本地的mongodb服务器,也可以是远程的.
所以,都有如下通用选项:
-h host 主机
--port port 端口
-u username 用户名
-p passwd 密码
2: mongoexport 导出json格式的文件
- [网络与通讯]椭圆轨道计算的一些问题
comsci
网络
如果按照中国古代农历的历法,现在应该是某个季节的开始,但是由于农历历法是3000年前的天文观测数据,如果按照现在的天文学记录来进行修正的话,这个季节已经过去一段时间了。。。。。
也就是说,还要再等3000年。才有机会了,太阳系的行星的椭圆轨道受到外来天体的干扰,轨道次序发生了变
- 软件专利如何申请
cuiyadll
软件专利申请
软件技术可以申请软件著作权以保护软件源代码,也可以申请发明专利以保护软件流程中的步骤执行方式。专利保护的是软件解决问题的思想,而软件著作权保护的是软件代码(即软件思想的表达形式)。例如,离线传送文件,那发明专利保护是如何实现离线传送文件。基于相同的软件思想,但实现离线传送的程序代码有千千万万种,每种代码都可以享有各自的软件著作权。申请一个软件发明专利的代理费大概需要5000-8000申请发明专利可
- Android学习笔记
darrenzhu
android
1.启动一个AVD
2.命令行运行adb shell可连接到AVD,这也就是命令行客户端
3.如何启动一个程序
am start -n package name/.activityName
am start -n com.example.helloworld/.MainActivity
启动Android设置工具的命令如下所示:
# am start -
- apache虚拟机配置,本地多域名访问本地网站
dcj3sjt126com
apache
现在假定你有两个目录,一个存在于 /htdocs/a,另一个存在于 /htdocs/b 。
现在你想要在本地测试的时候访问 www.freeman.com 对应的目录是 /xampp/htdocs/freeman ,访问 www.duchengjiu.com 对应的目录是 /htdocs/duchengjiu。
1、首先修改C盘WINDOWS\system32\drivers\etc目录下的
- yii2 restful web服务[速率限制]
dcj3sjt126com
PHPyii2
速率限制
为防止滥用,你应该考虑增加速率限制到您的API。 例如,您可以限制每个用户的API的使用是在10分钟内最多100次的API调用。 如果一个用户同一个时间段内太多的请求被接收, 将返回响应状态代码 429 (这意味着过多的请求)。
要启用速率限制, [[yii\web\User::identityClass|user identity class]] 应该实现 [[yii\filter
- Hadoop2.5.2安装——单机模式
eksliang
hadoophadoop单机部署
转载请出自出处:http://eksliang.iteye.com/blog/2185414 一、概述
Hadoop有三种模式 单机模式、伪分布模式和完全分布模式,这里先简单介绍单机模式 ,默认情况下,Hadoop被配置成一个非分布式模式,独立运行JAVA进程,适合开始做调试工作。
二、下载地址
Hadoop 网址http:
- LoadMoreListView+SwipeRefreshLayout(分页下拉)基本结构
gundumw100
android
一切为了快速迭代
import java.util.ArrayList;
import org.json.JSONObject;
import android.animation.ObjectAnimator;
import android.os.Bundle;
import android.support.v4.widget.SwipeRefreshLayo
- 三道简单的前端HTML/CSS题目
ini
htmlWeb前端css题目
使用CSS为多个网页进行相同风格的布局和外观设置时,为了方便对这些网页进行修改,最好使用( )。http://hovertree.com/shortanswer/bjae/7bd72acca3206862.htm
在HTML中加入<table style=”color:red; font-size:10pt”>,此为( )。http://hovertree.com/s
- overrided方法编译错误
kane_xie
override
问题描述:
在实现类中的某一或某几个Override方法发生编译错误如下:
Name clash: The method put(String) of type XXXServiceImpl has the same erasure as put(String) of type XXXService but does not override it
当去掉@Over
- Java中使用代理IP获取网址内容(防IP被封,做数据爬虫)
mcj8089
免费代理IP代理IP数据爬虫JAVA设置代理IP爬虫封IP
推荐两个代理IP网站:
1. 全网代理IP:http://proxy.goubanjia.com/
2. 敲代码免费IP:http://ip.qiaodm.com/
Java语言有两种方式使用代理IP访问网址并获取内容,
方式一,设置System系统属性
// 设置代理IP
System.getProper
- Nodejs Express 报错之 listen EADDRINUSE
qiaolevip
每天进步一点点学习永无止境nodejs纵观千象
当你启动 nodejs服务报错:
>node app
Express server listening on port 80
events.js:85
throw er; // Unhandled 'error' event
^
Error: listen EADDRINUSE
at exports._errnoException (
- C++中三种new的用法
_荆棘鸟_
C++new
转载自:http://news.ccidnet.com/art/32855/20100713/2114025_1.html
作者: mt
其一是new operator,也叫new表达式;其二是operator new,也叫new操作符。这两个英文名称起的也太绝了,很容易搞混,那就记中文名称吧。new表达式比较常见,也最常用,例如:
string* ps = new string("
- Ruby深入研究笔记1
wudixiaotie
Ruby
module是可以定义private方法的
module MTest
def aaa
puts "aaa"
private_method
end
private
def private_method
puts "this is private_method"
end
end