5.2 imnoise函数

imnoise2函数

function R = imnoise2(type, M, N, a, b)
%type 噪声类型 M,N噪声矩阵大小M x N a表示均值,b表示标准差
%IMNOISE2 Generates an array of random numbers with specified PDF.
%   R = IMNOISE2(TYPE, M, N, A, B) generates an array, R, of size
%   M-by-N, whose elements are random numbers of the specified TYPE
%   with parameters A and B. If only TYPE is included in the
%   input argument list, a  single random number of the specified
%   TYPE and default parameters shown below is generated. If only
%   TYPE, M, and N are provided, the default parameters shown below
%   are used.  If M = N = 1, IMNOISE2 generates a single random
%   number of the specified TYPE and parameters A and B.
%
%   Valid values for TYPE and parameters A and B are:
% 
%   'uniform'       Uniform random numbers in the interval (A, B).
%                   The default values are (0, 1).  
%   'gaussian'      Gaussian random numbers with mean A and standard
%                   deviation B. The default values are A = 0, B = 1.
%   'salt & pepper' Salt and pepper numbers of amplitude 0 with
%                   probability Pa = A, and amplitude 1 with
%                   probability Pb = B. The default values are Pa =
%                   Pb = A = B = 0.05.  Note that the noise has
%                   values 0 (with probability Pa = A) and 1 (with
%                   probability Pb = B), so scaling is necessary if
%                   values other than 0 and 1 are required. The noise
%                   matrix R is assigned three values. If R(x, y) =
%                   0, the noise at (x, y) is pepper (black).  If
%                   R(x, y) = 1, the noise at (x, y) is salt
%                   (white). If R(x, y) = 0.5, there is no noise
%                   assigned to coordinates (x, y). 
%   'lognormal'     Lognormal numbers with offset A and shape
%                   parameter B. The defaults are A = 1 and B =
%                   0.25.
%   'rayleigh'      Rayleigh noise with parameters A and B. The
%                   default values are A = 0 and B = 1. 
%   'exponential'   Exponential random numbers with parameter A.  The
%                   default is A = 1.
%   'erlang'        Erlang (gamma) random numbers with parameters A
%                   and B.  B must be a positive integer. The
%                   defaults are A = 2 and B = 5.  Erlang random
%                   numbers are approximated as the sum of B
%                   exponential random numbers.

%   Copyright 2002-2004 R. C. Gonzalez, R. E. Woods, & S. L. Eddins
%   Digital Image Processing Using MATLAB, Prentice-Hall, 2004
%   $Revision: 1.5 $  $Date: 2003/10/12 23:37:29 $

% Set default values.
%若参数个数为1,则给a,b,M,N赋值
if nargin == 1
   a = 0; b = 1;
   M = 1; N = 1;
elseif nargin == 3
   a = 0; b = 1;
end

% Begin processing. Use lower(type) to protect against input being
% capitalized. 
switch lower(type)
case 'uniform'
   R = a + (b - a)*rand(M, N);
case 'gaussian'
   R = a + b*randn(M, N);
case 'salt & pepper'
   if nargin <= 3
      a = 0.05; b = 0.05;
   end
   % Check to make sure that Pa + Pb is not > 1.
   if (a + b) > 1
      error('The sum Pa + Pb must not exceed 1.')
   end
   R(1:M, 1:N) = 0.5;
   % Generate an M-by-N array of uniformly-distributed random numbers
   % in the range (0, 1). Then, Pa*(M*N) of them will have values <=
   % a. The coordinates of these points we call 0 (pepper
   % noise). Similarly, Pb*(M*N) points will have values in the range
   % > a & <= (a + b).  These we call 1 (salt noise). 
   X = rand(M, N);
   c = find(X <= a);
   R(c) = 0;
   u = a + b;
   c = find(X > a & X <= u);
   R(c) = 1;
case 'lognormal'
   if nargin <= 3
      a = 1; b = 0.25;
   end
   R = a*exp(b*randn(M, N));
case 'rayleigh'
   R = a + (-b*log(1 - rand(M, N))).^0.5;
case 'exponential'
   if nargin <= 3
      a = 1;
   end
   if a <= 0
      error('Parameter a must be positive for exponential type.')
   end
   k = -1/a;
   R = k*log(1 - rand(M, N));
case 'erlang'
   if nargin <= 3
      a = 2; b = 5;
   end
   if (b ~= round(b) | b <= 0)
      error('Param b must be a positive integer for Erlang.')
   end
   k = -1/a;
   R = zeros(M, N);
   for j = 1:b         
      R = R + k*log(1 - rand(M, N));
   end
otherwise
   error('Unknown distribution type.')
end


书中画出各噪声的直方图

>> %以下显示所有类型的直方图,没有赋值的取默认值
R=imnoise2('gaussian',100000,1,0,1);
subplot(3,2,1),hist(R,50),title('高斯')%用hist显示直方图
R=imnoise2('salt & pepper',100000,10);
subplot(3,2,2),hist(R,50),title('焦盐')
R=imnoise2('lognormal',100000,10);
subplot(3,2,3),hist(R,50),title('对数正态')
R=imnoise2('rayleigh',100000,1);
subplot(3,2,4),hist(R,50),title('瑞利')
R=imnoise2('exponential',100000,1);
subplot(3,2,5),hist(R,50),title('指数')
R=imnoise2('erlang',100000,1);
subplot(3,2,6),hist(R,50),title('厄兰')

5.2 imnoise函数_第1张图片
在这里插入图片描述
imnoise2用来产生噪声模型,上式gaussian代表噪声服从高斯分布,100000,1代表产生的噪声矩阵为100000*1大小,0代表高斯分布随机数的均值,1代表高斯分布随机数的标准偏差。

imnoise3

function [r, R, S] = imnoise3(M, N, C, A, B)
% IMNOISE3 Generates periodic noise.
%   [r, R, S] = IMNOISE3(M, N, C, A, B), generates a spatial sinusoidal
%   noise pattern, r, of size M-by-N, its Fourier transform, R, and
%   spectrum, S. The remaining parameters are as follows:
%   C is a K-by-2 matrix containing K pairs of frequency domain coordinates
%   (u, v) indicating the locations of impulses in the frequency domain.
%   These locations are with respect to the frequency rectangele center at
%   (M/2 + 1, N/2 + 1). Only one paor of coordinates is required for each
%   impulse. The program automatically generates the locations of the
%   conjugate symmetric impulses. These impulse paird determine the
%   frequency content of r.
%   A is a 1-by-k vector that contains the ampitude of each of the K
%   impulse pairs. If A is not included in the argument, the default used
%   is A = ONES(1, K). B is then automatically set to its default values
%   (see next paragraph). The value specified for A(j) is associated with
%   the coordinates in C(j, 1:2).
% B is a K-by-2 matrix containing the Bx and By phase components for each
% impulse pair. The default values for B are B(1:K, 1:2) = 0.

% Chinese : 根据5.2.3周期噪声的DFT公式得到,A是振幅,u0,v0是关于x轴和y轴确定正弦频率,这里是C表示
% Bx和By是关于原点的相移。
% [r,R,S] = IMNOISE3(M,N,C,A,B),产生大小为M-by-N的空间正弦噪声模式r,
% 其傅里叶变换R和频谱S。 其余参数如下:
% C是K-by-2矩阵,包含K对频域坐标(u,v), 表示频域中脉冲的位置。 
% 这些位置相对于频率矩形中心(M / 2 + 1,N / 2 + 1)。 每个脉冲只需要一个坐标。 
% 程序自动生成共轭对称脉冲的位置。 这些脉冲信号决定了r的频率成分。
% A是1×k矢量,包含每个K脉冲对的幅度。 如果参数中不包含A,则使用的默认值为A = ONES(1,K)。 
% 然后B自动设置为其默认值(参见下一段)。 为A(j)指定的值与C(j,12)中的坐标相关联。 
% B是K-by-2矩阵,包含每个脉冲对的Bx和By相位分量。 B的默认值为B(1:K,12= 0% Process input parameters.
[K, n] = size(C);
if nargin ==3
    A(1:K) = 1.0;
    B(1:K, 1:2) = 0;
elseif nargin == 4
    B(1:K, 1:2) = 0;
end

% Generate R
R = zeros(M, N);
for j = 1:K
    u1 = M/2 + 1 + C(j, 1);
    v1 = N/2 + 1 + C(j, 2);
    R(u1, v1) = i * (A(j)/2) * exp(i * 2 * pi * C(j, 1)* B(j,1)/M);  % 位于(u + u0, v + v0) 的冲击处的R
    % Complex conjugate.
    u2 = M/2 + 1 - C(j, 1);
    v2 = N/2 + 1 - C(j, 2);
    R(u2, v2) = -i * (A(j)/2) * exp(i * 2 * pi * C(j, 2)* B(j,2)/M);% 位于(u - u0, v - v0) 的冲击处的R
end
% Compute spectrum and spatial sinusoidal pattern.
S = abs(R);
r = real(ifft2(ifftshift(R)));

你可能感兴趣的:(matlab图像处理,imnoise,matlab,图像处理)