- 第26篇:pFedLoRA: Model-Heterogeneous Personalized Federated Learning with LoRA使用lora微调的模型异构个性化联邦学习
还不秃顶的计科生
联邦学习深度学习人工智能开发语言
第一部分:解决的问题联邦学习(FederatedLearning,FL)是一种分布式机器学习方法,允许客户端在本地数据上训练模型,同时通过中心服务器共享学习成果。传统FL框架假设客户端使用相同的模型结构(模型同构),但在实际中可能面对:统计异质性:客户端的数据分布不均(non-IID)。资源异质性:客户端硬件资源有限。模型异质性:客户端可能拥有不同的模型结构。模型异构的个性化联邦学习(MHPFL)
- DeepSeek如何重塑我的编程学习:计算机新生的AI实践
EnigmaCoder
DeepSeek学习人工智能
目录前言邂逅DeepSeek:从困惑到惊喜初学编程的困境DeepSeek的优势️DeepSeek在编程学习中的运用注释算法逐步分析调试帮助跨语言迁移学习AI时代学习方法论革新知识获取方式转变新型学习能力培养反思与展望反思展望总结前言大家好!我是EnigmaCoder,本文我将介绍我的AI编程学习之旅。春节期间,DeepSeek横空出世,迅速登顶热榜。它功能强大,精准答疑、高效创作,瞬间点燃大众热情
- 机器学习:决策树
小源学AI
人工智能机器学习决策树人工智能
1.初步概念决策树是一种基于分裂特征的机器学习方法,用于分类和回归任务。它通过将数据按特征值进行分割,最终做出预测。与线性模型不同,决策树能够自动识别重要的特征,并根据数据情况生成复杂的决策规则。2.决策树的核心思想决策树的核心思想在于选择一个特征作为分裂条件,将当前的数据划分为两个子节点,并重复这个过程直到达到停止条件。分裂条件的选择通常基于信息增益(香农信息量)或基尼不等式,以确保每次分裂都能
- 情感分析研究综述:方法演化与前沿挑战
next_travel
人工智能机器学习深度学习
文章目录摘要abstract1.引言2.模型方法2.1文本情感分析2.1.1文档级情感分类2.1.2句子级情感分类2.1.3方面级情感分类2.2文本情感分析方法2.2.1基于词典的方法2.2.2基于机器学习的方法2.2.3基于深度学习方法2.3视觉情感分析2.4音频情感分析2.5多模态情感分析2.5.1图文方法2.5.2视听方法2.5.3音频-图像-文本方法3.情感分析的挑战3.1讥讽检测3.2模
- Java初学者:Java - 从新手到高效掌握的重点与难点
ProgramHan
java学习开发语言
很多人都想学习Java,但是又无从下手,难道Java只能到培训机构去花钱学吗?结合本人的经验,我认为不需要去培训机构花钱学也可以学习Java。首先,我们的需求很明确,是关于学习方法和如何将所学应用到工作中。可能我们希望文章详细且有实际指导意义,帮助他们高效学习Java。接下来,我得考虑文章的结构。通常,学习指南会包括基础知识、重点难点、实践应用等部分,这样我们可以有条理地进行学习。然后,如何将学习
- 强化学习原理与代码实战案例讲解
AI天才研究院
AI大模型企业级应用开发实战DeepSeekR1&大数据AI人工智能大模型计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
1.背景介绍1.1什么是强化学习?强化学习(ReinforcementLearning,RL)是机器学习的一个重要分支,它关注的是智能体(Agent)如何在环境中通过与环境交互来学习最优的行为策略。与其他机器学习方法不同,强化学习并不依赖于预先标注的数据,而是通过试错的方式来学习。想象一下,你正在训练一只小狗学习坐下。你不会给它看成千上万张“坐下”的照片,而是会给它一些指令,比如“坐下”,如果它照
- 强化学习在连续动作空间的应用:DDPG与TD3
AI天才研究院
计算AI大模型应用入门实战与进阶大数据人工智能语言模型AILLMJavaPython架构设计AgentRPA计算AI大模型应用
1.背景介绍1.1强化学习简介强化学习(ReinforcementLearning,简称RL)是一种机器学习方法,它通过让智能体(Agent)在环境(Environment)中与环境进行交互,学习如何根据观察到的状态(State)选择动作(Action),以最大化某种长期累积奖励(Reward)的方法。强化学习的核心问题是学习一个策略(Policy),即在给定状态下选择动作的映射关系。1.2连续动
- 【DeepSeek】一文详解GRPO算法——为什么能减少大模型训练资源?
FF-Studio
DeepSeekR1算法
GRPO,一种新的强化学习方法,是DeepSeekR1使用到的训练方法。今天的这篇博客文章,笔者会从零开始,层层递进地为各位介绍一种在强化学习中极具实用价值的技术——GRPO(GroupRelativePolicyOptimization)。如果你是第一次听说这个概念,也不必慌张,笔者会带领你从最基础的强化学习背景知识讲起,一步步剖析其来龙去脉,然后再结合实例讲解GRPO在实际应用中的思路和操作示
- DeepSeek底层揭秘——多头潜在注意力MLA
9命怪猫
AIai人工智能大模型
目录1.多头潜在注意力(MLA)2.核心功能3.技术要素4.难点挑战暨含解决方案5.技术路径6.应用场景7.实际案例:DeepSeek8.最新研究与技术进展9.未来趋势猫哥说1.多头潜在注意力(MLA)(1)定义“多头潜在注意力(Multi-HeadLatentAttention,MLA)”是一种基于注意力机制的深度学习方法,旨在通过多个注意力头(Multi-HeadAttention)对潜在空间
- 每天一篇逻辑漏洞
不灭锦鲤
学习
前言:水一篇文章,今天也没有去挖洞内容:学了那么多了,还没有长进,是不是我的学习方法有问题但是到底哪里有问题呢,我又不知道,我好像好久没有总结了,应该写一篇日记,然后总结的一篇文章,然后把日记的内容丢里面,感觉就挺好了,就不用去找文章了好了就这样,进入正题好了,今天学会伪造了jsonp的xss,就是说是json格式的话,不是jsonp格式,可以尝试在url后面加上callback,看是否有返回值
- 2020-10-09
weixin_45660257
笔记
java学习集合的目标1.会使用集合存储数据2.会遍历集合,把数据取出来3.掌握每种集合的特性集合框架的学习方法方式1.学习顶层:学习顶层接口,抽象类中共性的方法,所有的子类创建对象使用Collection接口定义的是所有的单列集合中共性的方法所有的单列集合都可以使用共性的方法没有带索引的方法继承:子类共性抽取形成父类(接口)List接口1.有序的集合(存储和取出元素顺序相同)2.允许存储重复的元
- 强化学习在机器人控制中的应用:从理论到实践
Echo_Wish
前沿技术人工智能机器人
强化学习在机器人控制中的应用:从理论到实践大家好,我是你们熟悉的人工智能与Python领域自媒体创作者Echo_Wish。今天我们来聊聊一个炙手可热的话题——强化学习在机器人控制中的应用。近年来,随着人工智能技术的飞速发展,机器人在各个领域的应用越来越广泛。而强化学习作为一种重要的机器学习方法,为机器人控制提供了强有力的技术支持。接下来,让我们一起探讨强化学习在机器人控制中的原理和实践,并通过具体
- 目标检测代码示例(基于Python和OpenCV)
matlab_python22
计算机视觉
引言目标检测是计算机视觉领域中的一个核心任务,其目标是在图像或视频中定位和识别特定对象。随着技术的发展,目标检测算法不断演进,从传统的基于手工特征的方法到现代的深度学习方法,再到基于Transformer的架构,目标检测技术已经取得了显著的进步。本文将总结和对比几种主要的目标检测算法,探讨它们的优势、劣势和适用场景。1.目标检测算法分类1.1单阶段检测(One-Stage)与双阶段检测(Two-S
- |网络安全|网络安全学习方法
网络安全King
web安全学习方法安全
1、先网络后安全很多初学者还没搞定网络看懂网络拓扑,就急着研究防火墙或VPN,其实这样就不清楚整个网络架构是如何安全演进的。正确的流程是:先通过网络协议和拓扑设计的学习,能独立搭建一个企业网/校园网,再引入局域网安全、防火墙、入侵检测、VPN等安全技术,使整个网络慢慢变得安全起来,这样才能看到整个网络安全的全貌。2、勤做实验勤抓包目前各大网络和安全厂商都有对应的模拟器,不再需要硬件支持就可以在电脑
- 一、系统分析师考试介绍
Rainbow酱
系统分析系统分析软考
科目1考点考试介绍考试报名、考试科目、大纲及考点分析、证书价值、常见问题。视频课程规划、推荐资料、学习方法。计算机组成与结构数据的表示:进制转换、编码表示、逻辑运算、浮点数。校验码:奇偶校验码、循环冗余校验码、海明校验码。计算机硬件:硬件组成、CPU、寄存器等。计算机指令:寻址方式、指令流水线计算。计算机体系结构:Flynn分类,指令系统CISC和RISC。计算机存储系统:分级存储、cache、存
- 17.推荐系统的在线学习与实时更新
郑万通
推荐系统
接下来就讲解推荐系统的在线学习与实时更新。推荐系统的在线学习和实时更新是为了使推荐系统能够动态地适应用户行为的变化,保持推荐结果的实时性和相关性。以下是详细的介绍和实现方法。推荐系统的在线学习与实时更新在线学习的概念在线学习(OnlineLearning)是一种机器学习方法,与传统的批量学习(BatchLearning)不同,在线学习模型能够在数据流到达时逐步更新,而不是在整个数据集上训练一次。这
- KDD 2023 | 先睹为快!KDD 2023论文合集50篇(附下载地址)
马拉AI
机器学习人工智能深度学习
下载地址:点我跳转1.DoubleAdapt:AMeta-learningApproachtoIncrementalLearningforStockTrendForecastingCode:NoneArea:一种用于股票趋势预测增量学习的元学习方法2.HomoGCL:RethinkingHomophilyinGraphContrastiveLearningCode:https://github.c
- 对DeepSeek-R1通过强化学习提升大型语言模型推理能力的技术原理解析
一只贴代码君
语言模型人工智能自然语言处理学习AI编程开发语言
强化学习基础•基本概念:强化学习是一种机器学习方法,智能体(模型)通过与环境进行交互,根据环境反馈的奖励信号来学习最优的行为策略。•关键要素:包括环境(模型所处的推理任务场景)、状态(模型在推理过程中的当前情况,如已有的推理步骤、已知信息等)、动作(模型在当前状态下做出的推理决策,如选择何种推理方法、如何组织语言等)、奖励(根据模型的动作和结果给予的反馈,如推理正确给予正奖励,错误给予负奖励或无奖
- 迁移学习 Transfer Learning
有人给我介绍对象吗
模块迁移学习人工智能机器学习
迁移学习(TransferLearning)是什么?迁移学习是一种机器学习方法,它的核心思想是利用已有模型的知识来帮助新的任务或数据集进行学习,从而减少训练数据的需求、加快训练速度,并提升模型性能。1.为什么需要迁移学习?在深度学习任务(如目标检测、分类)中,通常需要大量数据和计算资源来训练一个高性能模型。然而,在某些场景下,我们面临以下挑战:数据有限:有些领域(如医学影像、多光谱图像)很难收集足
- deepseek:三个月备考高级系统架构师
wujiada001
AI-MODEL系统架构
一、备考总体规划(2025年2月11日-2025年5月)1.第一阶段:基础夯实(2025年2月11日-2025年3月10日)目标:快速掌握系统架构师考试的核心知识点。重点内容:计算机组成原理、操作系统、数据库原理。软件工程、设计模式、系统架构设计原则。网络通信、分布式系统、云计算、大数据等新兴技术。学习方法:阅读《系统架构设计师教程》或精简版教材,快速过一遍知识点。观看视频课程(如慕课网、腾讯课堂
- 聚类算法概念、分类、特点及应用场景【机器学习】【无监督学习】
飞火流星02027
云计算机器学习算法聚类人工智能聚类算法
概念机器学习聚类算法是一种无监督学习方法,旨在将数据集分割成不同的类或簇,使得同一簇内的数据对象相似性尽可能大,而不同簇之间的数据对象差异性也尽可能大。聚类算法广泛应用于新闻自动分组、用户分群、图像分割等领域。主要聚类算法及其特点层次聚类算法层次法(hierarchicalmethods)通过构建数据点之间的层次结构来进行聚类,可以是自底向上的凝聚方法或自顶向下的分裂方法。代表算法包括CU
- 土壤分析:土壤污染监测_(18).土壤污染监测与修复的最新进展
zhubeibei168
农业检测opencv人工智能计算机视觉无人机图像处理农业检测
土壤污染监测与修复的最新进展1.引言随着工业化和城市化的快速发展,土壤污染问题日益严重,对环境和人类健康构成了巨大威胁。传统的土壤污染监测方法依赖于实验室分析,耗时且成本高昂。近年来,计算机视觉技术在土壤污染监测领域的应用取得了显著进展,通过图像处理和机器学习方法,可以快速、准确地识别和监测土壤污染情况。本节将介绍计算机视觉技术在土壤污染监测与修复中的最新进展,包括数据采集、图像处理、特征提取、污
- 大模型学习笔记 - LLM 对齐优化算法 DPO
JL_Jessie
学习笔记算法LLM
LLM-DPOLLM-DPODPO概述DPO目标函数推导DPO目标函数梯度的推导DPO概述大模型预训练是从大量语料中进行无监督学习,语料库内容混杂,训练的目标是语言模型损失,任务是nexttokenprediction,生成的token不可控,为了让大模型能生成符合人类偏好的答案(无毒无害等)一般都会进行微调和人类对齐,通常采用的方法是基于人类反馈的强化学习方法RLHF.RLHF是一个复杂且经常不
- 自监督的主要学习方法
一只波加猹~
自监督学习自监督
自监督学习是一种机器学习方法,其中模型从未标注的数据中学习生成标签,通常通过构造预训练任务或预测任务来从数据的内部结构中提取信息。它的核心目标是利用无监督的数据进行学习,从而在下游任务中更好地利用监督信号。自监督学习的主要方法可以分为以下三类:1.基于上下文(Context-based)方法基于上下文的方法通过预测数据的局部信息或不同部分之间的关系,来进行自监督学习。模型通过挖掘数据本身的结构或模
- Python近红外光谱分析与机器学习、深度学习方法融合实践技术
xiao5kou4chang6kai4
人工智能机器学习深度学习python机器学习深度学习近红外光谱
第一章Python入门基础【理论讲解与案例演示实操练习】1、Python环境搭建(下载、安装与版本选择)。2、如何选择Python编辑器?(IDLE、Notepad++、PyCharm、Jupyter…)3、Python基础(数据类型和变量、字符串和编码、list和tuple、条件判断、循环、函数的定义与调用等)4、常见的错误与程序调试5、第三方模块的安装与使用6、文件读写(I/O)7、实操练习第
- 数据结构、算法与STL
刃神太酷啦
蓝桥杯C++组C++数据结构
数据结构、算法与STL顺序存储比如像手机的通讯录中的排序,就可以在内存中采用顺序存储的方式算法是可以没有输入的,但一定要有输出。没有输出的算法是没有意义的算法的学习方法跟数学相似运行代码的时间用时间复杂度去看时间复杂度只用看被执行次数最多(凭感觉看是哪个)的那个语句使用C++标准注意事项:1.编译器支持几几年的标准,我们就要去写符合标准下的代码2.C++标准可以向前兼容,但是不能向后兼容(eg:支
- 一文掌握什么是时间序列?时间序列研究的核心任务?目前最强大的时序分析与建模工具和项目?
幸运 lucky
人工智能学习之路时间序列核心任务时序分析与建模工具和项目SOTA
CSDN叶庭云:https://yetingyun.blog.csdn.net/什么是时间序列?时间序列是一系列按照时间顺序排列的数据点,这些数据点通常是随时间连续变化的测量值。时间序列分析是统计学中专门用于解析时间顺序数据的一套技术,旨在识别数据中的模式、趋势、季节性波动及其他潜在的周期性特征。然而,当前,机器学习与深度学习方法在这一领域的应用正日益受到青睐。时间序列数据可以来源于各种领域,如经
- Python视频制作引擎Manim安装教程2024版(科学概念可视化)_下载mainm引擎
m0_61067876
程序员python开发语言
一、Python所有方向的学习路线Python所有方向路线就是把Python常用的技术点做整理,形成各个领域的知识点汇总,它的用处就在于,你可以按照上面的知识点去找对应的学习资源,保证自己学得较为全面。二、学习软件工欲善其事必先利其器。学习Python常用的开发软件都在这里了,给大家节省了很多时间。三、入门学习视频我们在看视频学习的时候,不能光动眼动脑不动手,比较科学的学习方法是在理解之后运用它们
- c语言八数码问题启发式搜索_一种快速且简单的AI启发式语言学习方法
weixin_26632369
pythonjava人工智能编程语言机器学习
c语言八数码问题启发式搜索介绍(Introduction)ThespecialthingIfoundwhenIfirststarteddivingintothefieldofArtificialIntelligencewastheinfiniteamountofparallelsbetweenhowneuralnetworkslearnandmysubjectiveexperienceofmyow
- 一切皆是映射:神经网络在图像识别中的应用案例
AI大模型应用之禅
AI大模型与大数据计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
一切皆是映射:神经网络在图像识别中的应用案例关键词:神经网络、图像识别、深度学习、卷积神经网络、映射、模式识别1.背景介绍1.1问题的由来图像识别问题的研究源于人类对于智能机器的渴望。早在20世纪50年代,人工智能的先驱们就开始探索如何让计算机具备类似人类的视觉感知能力。从最初的简单模式匹配,到后来的统计学习方法,再到如今的深度学习,图像识别技术经历了几代演变。这一演变过程反映了人工智能技术的快速
- 深入浅出Java Annotation(元注解和自定义注解)
Josh_Persistence
Java Annotation元注解自定义注解
一、基本概述
Annontation是Java5开始引入的新特征。中文名称一般叫注解。它提供了一种安全的类似注释的机制,用来将任何的信息或元数据(metadata)与程序元素(类、方法、成员变量等)进行关联。
更通俗的意思是为程序的元素(类、方法、成员变量)加上更直观更明了的说明,这些说明信息是与程序的业务逻辑无关,并且是供指定的工具或
- mysql优化特定类型的查询
annan211
java工作mysql
本节所介绍的查询优化的技巧都是和特定版本相关的,所以对于未来mysql的版本未必适用。
1 优化count查询
对于count这个函数的网上的大部分资料都是错误的或者是理解的都是一知半解的。在做优化之前我们先来看看
真正的count()函数的作用到底是什么。
count()是一个特殊的函数,有两种非常不同的作用,他可以统计某个列值的数量,也可以统计行数。
在统
- MAC下安装多版本JDK和切换几种方式
棋子chessman
jdk
环境:
MAC AIR,OS X 10.10,64位
历史:
过去 Mac 上的 Java 都是由 Apple 自己提供,只支持到 Java 6,并且OS X 10.7 开始系统并不自带(而是可选安装)(原自带的是1.6)。
后来 Apple 加入 OpenJDK 继续支持 Java 6,而 Java 7 将由 Oracle 负责提供。
在终端中输入jav
- javaScript (1)
Array_06
JavaScriptjava浏览器
JavaScript
1、运算符
运算符就是完成操作的一系列符号,它有七类: 赋值运算符(=,+=,-=,*=,/=,%=,<<=,>>=,|=,&=)、算术运算符(+,-,*,/,++,--,%)、比较运算符(>,<,<=,>=,==,===,!=,!==)、逻辑运算符(||,&&,!)、条件运算(?:)、位
- 国内顶级代码分享网站
袁潇含
javajdkoracle.netPHP
现在国内很多开源网站感觉都是为了利益而做的
当然利益是肯定的,否则谁也不会免费的去做网站
&
- Elasticsearch、MongoDB和Hadoop比较
随意而生
mongodbhadoop搜索引擎
IT界在过去几年中出现了一个有趣的现象。很多新的技术出现并立即拥抱了“大数据”。稍微老一点的技术也会将大数据添进自己的特性,避免落大部队太远,我们看到了不同技术之间的边际的模糊化。假如你有诸如Elasticsearch或者Solr这样的搜索引擎,它们存储着JSON文档,MongoDB存着JSON文档,或者一堆JSON文档存放在一个Hadoop集群的HDFS中。你可以使用这三种配
- mac os 系统科研软件总结
张亚雄
mac os
1.1 Microsoft Office for Mac 2011
大客户版,自行搜索。
1.2 Latex (MacTex):
系统环境:https://tug.org/mactex/
&nb
- Maven实战(四)生命周期
AdyZhang
maven
1. 三套生命周期 Maven拥有三套相互独立的生命周期,它们分别为clean,default和site。 每个生命周期包含一些阶段,这些阶段是有顺序的,并且后面的阶段依赖于前面的阶段,用户和Maven最直接的交互方式就是调用这些生命周期阶段。 以clean生命周期为例,它包含的阶段有pre-clean, clean 和 post
- Linux下Jenkins迁移
aijuans
Jenkins
1. 将Jenkins程序目录copy过去 源程序在/export/data/tomcatRoot/ofctest-jenkins.jd.com下面 tar -cvzf jenkins.tar.gz ofctest-jenkins.jd.com &
- request.getInputStream()只能获取一次的问题
ayaoxinchao
requestInputstream
问题:在使用HTTP协议实现应用间接口通信时,服务端读取客户端请求过来的数据,会用到request.getInputStream(),第一次读取的时候可以读取到数据,但是接下来的读取操作都读取不到数据
原因: 1. 一个InputStream对象在被读取完成后,将无法被再次读取,始终返回-1; 2. InputStream并没有实现reset方法(可以重
- 数据库SQL优化大总结之 百万级数据库优化方案
BigBird2012
SQL优化
网上关于SQL优化的教程很多,但是比较杂乱。近日有空整理了一下,写出来跟大家分享一下,其中有错误和不足的地方,还请大家纠正补充。
这篇文章我花费了大量的时间查找资料、修改、排版,希望大家阅读之后,感觉好的话推荐给更多的人,让更多的人看到、纠正以及补充。
1.对查询进行优化,要尽量避免全表扫描,首先应考虑在 where 及 order by 涉及的列上建立索引。
2.应尽量避免在 where
- jsonObject的使用
bijian1013
javajson
在项目中难免会用java处理json格式的数据,因此封装了一个JSONUtil工具类。
JSONUtil.java
package com.bijian.json.study;
import java.util.ArrayList;
import java.util.Date;
import java.util.HashMap;
- [Zookeeper学习笔记之六]Zookeeper源代码分析之Zookeeper.WatchRegistration
bit1129
zookeeper
Zookeeper类是Zookeeper提供给用户访问Zookeeper service的主要API,它包含了如下几个内部类
首先分析它的内部类,从WatchRegistration开始,为指定的znode path注册一个Watcher,
/**
* Register a watcher for a particular p
- 【Scala十三】Scala核心七:部分应用函数
bit1129
scala
何为部分应用函数?
Partially applied function: A function that’s used in an expression and that misses some of its arguments.For instance, if function f has type Int => Int => Int, then f and f(1) are p
- Tomcat Error listenerStart 终极大法
ronin47
tomcat
Tomcat报的错太含糊了,什么错都没报出来,只提示了Error listenerStart。为了调试,我们要获得更详细的日志。可以在WEB-INF/classes目录下新建一个文件叫logging.properties,内容如下
Java代码
handlers = org.apache.juli.FileHandler, java.util.logging.ConsoleHa
- 不用加减符号实现加减法
BrokenDreams
实现
今天有群友发了一个问题,要求不用加减符号(包括负号)来实现加减法。
分析一下,先看最简单的情况,假设1+1,按二进制算的话结果是10,可以看到从右往左的第一位变为0,第二位由于进位变为1。
 
- 读《研磨设计模式》-代码笔记-状态模式-State
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
/*
当一个对象的内在状态改变时允许改变其行为,这个对象看起来像是改变了其类
状态模式主要解决的是当控制一个对象状态的条件表达式过于复杂时的情况
把状态的判断逻辑转移到表示不同状态的一系列类中,可以把复杂的判断逻辑简化
如果在
- CUDA程序block和thread超出硬件允许值时的异常
cherishLC
CUDA
调用CUDA的核函数时指定block 和 thread大小,该大小可以是dim3类型的(三维数组),只用一维时可以是usigned int型的。
以下程序验证了当block或thread大小超出硬件允许值时会产生异常!!!GPU根本不会执行运算!!!
所以验证结果的正确性很重要!!!
在VS中创建CUDA项目会有一个模板,里面有更详细的状态验证。
以下程序在K5000GPU上跑的。
- 诡异的超长时间GC问题定位
chenchao051
jvmcmsGChbaseswap
HBase的GC策略采用PawNew+CMS, 这是大众化的配置,ParNew经常会出现停顿时间特别长的情况,有时候甚至长到令人发指的地步,例如请看如下日志:
2012-10-17T05:54:54.293+0800: 739594.224: [GC 739606.508: [ParNew: 996800K->110720K(996800K), 178.8826900 secs] 3700
- maven环境快速搭建
daizj
安装mavne环境配置
一 下载maven
安装maven之前,要先安装jdk及配置JAVA_HOME环境变量。这个安装和配置java环境不用多说。
maven下载地址:http://maven.apache.org/download.html,目前最新的是这个apache-maven-3.2.5-bin.zip,然后解压在任意位置,最好地址中不要带中文字符,这个做java 的都知道,地址中出现中文会出现很多
- PHP网站安全,避免PHP网站受到攻击的方法
dcj3sjt126com
PHP
对于PHP网站安全主要存在这样几种攻击方式:1、命令注入(Command Injection)2、eval注入(Eval Injection)3、客户端脚本攻击(Script Insertion)4、跨网站脚本攻击(Cross Site Scripting, XSS)5、SQL注入攻击(SQL injection)6、跨网站请求伪造攻击(Cross Site Request Forgerie
- yii中给CGridView设置默认的排序根据时间倒序的方法
dcj3sjt126com
GridView
public function searchWithRelated() {
$criteria = new CDbCriteria;
$criteria->together = true; //without th
- Java集合对象和数组对象的转换
dyy_gusi
java集合
在开发中,我们经常需要将集合对象(List,Set)转换为数组对象,或者将数组对象转换为集合对象。Java提供了相互转换的工具,但是我们使用的时候需要注意,不能乱用滥用。
1、数组对象转换为集合对象
最暴力的方式是new一个集合对象,然后遍历数组,依次将数组中的元素放入到新的集合中,但是这样做显然过
- nginx同一主机部署多个应用
geeksun
nginx
近日有一需求,需要在一台主机上用nginx部署2个php应用,分别是wordpress和wiki,探索了半天,终于部署好了,下面把过程记录下来。
1. 在nginx下创建vhosts目录,用以放置vhost文件。
mkdir vhosts
2. 修改nginx.conf的配置, 在http节点增加下面内容设置,用来包含vhosts里的配置文件
#
- ubuntu添加admin权限的用户账号
hongtoushizi
ubuntuuseradd
ubuntu创建账号的方式通常用到两种:useradd 和adduser . 本人尝试了useradd方法,步骤如下:
1:useradd
使用useradd时,如果后面不加任何参数的话,如:sudo useradd sysadm 创建出来的用户将是默认的三无用户:无home directory ,无密码,无系统shell。
顾应该如下操作:
- 第五章 常用Lua开发库2-JSON库、编码转换、字符串处理
jinnianshilongnian
nginxlua
JSON库
在进行数据传输时JSON格式目前应用广泛,因此从Lua对象与JSON字符串之间相互转换是一个非常常见的功能;目前Lua也有几个JSON库,本人用过cjson、dkjson。其中cjson的语法严格(比如unicode \u0020\u7eaf),要求符合规范否则会解析失败(如\u002),而dkjson相对宽松,当然也可以通过修改cjson的源码来完成
- Spring定时器配置的两种实现方式OpenSymphony Quartz和java Timer详解
yaerfeng1989
timerquartz定时器
原创整理不易,转载请注明出处:Spring定时器配置的两种实现方式OpenSymphony Quartz和java Timer详解
代码下载地址:http://www.zuidaima.com/share/1772648445103104.htm
有两种流行Spring定时器配置:Java的Timer类和OpenSymphony的Quartz。
1.Java Timer定时
首先继承jav
- Linux下df与du两个命令的差别?
pda158
linux
一、df显示文件系统的使用情况,与du比較,就是更全盘化。 最经常使用的就是 df -T,显示文件系统的使用情况并显示文件系统的类型。 举比例如以下: [root@localhost ~]# df -T Filesystem Type &n
- [转]SQLite的工具类 ---- 通过反射把Cursor封装到VO对象
ctfzh
VOandroidsqlite反射Cursor
在写DAO层时,觉得从Cursor里一个一个的取出字段值再装到VO(值对象)里太麻烦了,就写了一个工具类,用到了反射,可以把查询记录的值装到对应的VO里,也可以生成该VO的List。
使用时需要注意:
考虑到Android的性能问题,VO没有使用Setter和Getter,而是直接用public的属性。
表中的字段名需要和VO的属性名一样,要是不一样就得在查询的SQL中
- 该学习笔记用到的Employee表
vipbooks
oraclesql工作
这是我在学习Oracle是用到的Employee表,在该笔记中用到的就是这张表,大家可以用它来学习和练习。
drop table Employee;
-- 员工信息表
create table Employee(
-- 员工编号
EmpNo number(3) primary key,
-- 姓