欢迎来到本博客❤️❤️
博主优势:博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。
⛳️座右铭:行百里者,半于九十。
本文目录如下:
目录
1 概述
2 运行结果
3 Matlab代码实现
4 参考文献
知识回顾:
基于概率距离削减法、蒙特卡洛削减法的风光场景不确定性削减(Matlab代码实现) |
基于蒙特卡诺的风、光模型出力【蒙特卡诺场景削减】(Matlab代码实现) |
拉丁超立方抽样方法LHS最早是由McKay等1[5$提出,现已用于很多领域[60-63]。将LHS应用于结构可靠性分析,可提高数值模拟结构可靠性分析样本代表性,进而提高结构可靠性分析结果
精度与效率。
LH重要抽样法与蒙特卡罗重要抽样法类似,都是首先选取样本,用样本的失效频率近似母体的失效概率。将LHS取得的样本运用到重要抽样中称为LH重要抽样可靠性分析方法。当重要抽样
是简单重要抽样时简单LH重要抽样(standard importance latin hypercupe samping, Sl[LHS)的
计算公式如下。首先是在标准正态分布空间内进行拉丁超立方抽样,得到样本U。
拉丁超立方相较于蒙特卡洛,改进了采样策略能够做到较小采样规模中获得较高的采样精度。
个人主页:@橘柑橙柠桔柚
部分理论来源于网络,如有侵权请联系删除。
[1]张巍峰,车延博,刘阳升.电力系统可靠性评估中的改进拉丁超立方抽样方法[J].电力系统自动化,2015,39(04):52-57.
[2]刘鹏. 基于改进拉丁超立方重要抽样方法的结构可靠性分析[D].暨南大学,2016.