速看!年低的最后一期机器学习材料和材料基因组专题!!!

机器学习(ml)在材料的应用:面对巨大的材料设计空间,基于理论研究、实验分析以及计算仿真的传统方法已经跟不上高性能新材料的发展需求。近年来,机器学习与材料基因组的结合带动了材料信息学的进步,推动了材料科学的发展。当前,运用数据驱动的机器学习算法建立材料性能预测模型,然后将其应用于材料筛选与新材料开发的研究引起了学者们的广泛关注。利用机器学习框架搭建材料研究设计平台对材料大数据资源进行分析与预测,成为开发新型材料的重要手段。包括根据预测对象确定材料特征的计算或自动抽取,不同精度的实验与计算数据的获取与预处理;选取或者开发合适的机器学习预测模型和训练算法;估计预测效果与预测性能的可靠性;处理材料机器学习问题所独有的小数据、异构数据、非平衡数据等特性。目前研究的焦点是针对不同的材料性能,收集相关的数据集,基于物理原理构造特征表示来训练机器学习模型,并将机器学习的最新技术用于材料信息学。现阶段机器学习已经被应用于光伏、热电、半导体、有机材料等几乎所有的材料设计领域。通过采用机器学习算法训练材料性能的预测模型,并将其用于筛选现有材料数据库或者搜索新的材料,大大加快了新材料发现的过程。机器学习在材料科学的研究应用文章近两年来多次发表在Nature、Science、Angew、Advanced Materials、JACS、Nano Letters、ACS Catalysis、Joule、Matter、Energy Storage Materials等国际知名顶刊。例如最近德国马普钢铁研究所韦业博士与Dierk Raabe教授(共同通讯)联合提出了一种主动学习策略,以基于非常稀少的数据,在几乎无限的成分空间中加速高熵因瓦合金的设计。该研究方法是一个闭环,将机器学习与密度泛函理论、热力学计算和实验相结合。研究人员首先使用了699种合金的公开数据训练了学习算法,然后让算法生成大量具有低热系数的候选成分,在加工和表征了17种可能的新合金后,研究人员确定了两种热膨胀系数极低的高熵因瓦合金(在300 K下为约为2×10-6 K-1)。文献链接:Machine learningenabled highentropy alloydiscovery ( Science 2022, 378, 78-85) 。 剑桥大学的Angelos Michaelides团队在这一领域取得了突破,他们利用量子蒙特卡洛(QMC)方法(分子材料最精确的第一性原理方法之一)来确定所研究系统最合适的DFT泛函,从而避免了计算中的精度和成本之间的权衡,并且开发了一种机器学习算法(MLPs),以低得多的成本预测DFT所算得的能量变化(Nature,2022,609,512–516)。华盛顿大学David Baker教授团队一年连发三篇Science,超越AlphaFold!(Science, 2022, 377(6604): 387-394.,Science, 2022, 377(6604): 387-394.,Science,2022,DOI: 10.1126/science.add2187)。 2022年10月6日

材料基因组:材料基因组技术是近年来兴起的材料研究新理念和新方法,是当今世界材料科学与工程领域的最前沿。材料基因组技术的实质是通过融合高通量材料计算设计、高通量材料实验和材料数据库三大组成要素,构建材料设计研发的协同创新网络,加速新材料从发现到应用的全过程。材料基因组计划的核心理念,是通过计算、数据和实验"三位一体"的方式,变革传统的主要基于经验和实验的"试错法"材料研发模式,把发现、开发、生产和应用新材料的速度提高到目前的两倍。它旨在建立一个新的以计算模拟和理论预测优先、实验验证在后的新材料研发文化,从而取代现有的以经验和实验为主的材料研发的模式。

由于机器学习材料与材料基因组研究发展缓慢,学习平台文献资料较少,培训学习迫在眉睫, 应广大科研人员要求,本单位经过数月调研,决定联合专家举办“机器学习(ML)在材料领域应用与材料基因组”的线上专题,本单位已经举办多期,参会人员达上千余人,学员一致评价极高 ,我们是国内从事机器学习(ML)材料领域应用与材料基因组的专业单位,请一定要认准我们!

邀请函丨最新一期机器学习(ML)在材料领域的应用+材料基因组专题​mp.weixin.qq.com/s/sdoIYhLnMbtW_MCcyGN-qQ正在上传…重新上传取消icon-default.png?t=M85Bhttps://link.zhihu.com/?target=https%3A//mp.weixin.qq.com/s/sdoIYhLnMbtW_MCcyGN-qQ

你可能感兴趣的:(材料基因组,材料科学,机器学习.,人工智能,python,深度学习,材料工程)