Mean Shift算法,一般是指一个迭代的步骤,即先算出当前点的偏移均值,移动该点到其偏移均值,然后以此为新的起始点,继续移动,直到满足一定的条件结束.
参考博客:
https://www.cnblogs.com/xfzhang/p/7261172.html
https://www.cnblogs.com/necp-zwl/p/6517092.html
Camshift它是MeanShift算法的改进,称为连续自适应的MeanShift算法,CamShift算法的全称是"Continuously Adaptive Mean-SHIFT",它的基本思想是视频图像的所有帧作MeanShift运算,并将上一帧的结果(即Search Window的中心和大小)作为下一帧MeanShift算法的Search Window的初始值,如此迭代下去
函数:
C++: void calcHist(const Mat* images, int nimages, const int* channels, InputArray mask, OutputArray hist, int dims, const int* histSize, const float** ranges, bool uniform=true, bool accumulate=false )
参数详解:
onst Mat* images:输入图像
int nimages:输入图像的个数
const int* channels:需要统计直方图的第几通道
InputArray mask:掩膜,,计算掩膜内的直方图 …Mat()
OutputArray hist:输出的直方图数组
int dims:需要统计直方图通道的个数
const int* histSize:指的是直方图分成多少个区间,就是 bin的个数
const float** ranges: 统计像素值得区间
bool uniform=true::是否对得到的直方图数组进行归一化处理
#include
#include
#include
#include
#include
#include
using namespace cv;
using namespace std;
int main(int argc, char **argv)
{
const string about =
"This sample demonstrates the meanshift algorithm.\n"
"The example file can be downloaded from:\n"
" https://www.bogotobogo.com/python/OpenCV_Python/images/mean_shift_tracking/slow_traffic_small.mp4";
const string keys =
"{ h help | | print this help message }"
"{ @image || path to image file }" ;
CommandLineParser parser(argc, argv, keys);//命令行类
parser.about(about);
if (parser.has("help"))//判断是否需要帮助
{
parser.printMessage();
return 0;
}
string filename = parser.get<string>("@image");//获取图片路径
if (!parser.check())
{
parser.printErrors();
return 0;
}
VideoCapture capture(filename);//读取视频
if (!capture.isOpened()){
//error in opening the video input
cerr << "Unable to open file!" << endl;
return 0;
}
Mat frame, roi, hsv_roi, mask;
// take first frame of the video
capture >> frame;
// setup initial location of window
Rect track_window(300, 200, 100, 50); // simply hardcoded the values
// set up the ROI for tracking
roi = frame(track_window);//感兴趣区域
cvtColor(roi, hsv_roi, COLOR_BGR2HSV);//感兴趣区域颜色空间转换
inRange(hsv_roi, Scalar(0, 60, 32), Scalar(180, 255, 255), mask);//根据HSV值丢弃低亮度值
float range_[] = {0, 180};
const float* range[] = {range_};
Mat roi_hist;
int histSize[] = {180};
int channels[] = {0};
calcHist(&hsv_roi, 1, channels, mask, roi_hist, 1, histSize, range);//计算直方图
normalize(roi_hist, roi_hist, 0, 255, NORM_MINMAX);//标准化
// Setup the termination criteria, either 10 iteration or move by atleast 1 pt
TermCriteria term_crit(TermCriteria::EPS | TermCriteria::COUNT, 10, 1);
while(true){
Mat hsv, dst;
capture >> frame;
if (frame.empty())
break;
cvtColor(frame, hsv, COLOR_BGR2HSV);
calcBackProject(&hsv, 1, channels, roi_hist, dst, range);
// apply meanshift to get the new location
meanShift(dst, track_window, term_crit);
// Draw it on image
rectangle(frame, track_window, 255, 2);
imshow("img2", frame);
int keyboard = waitKey(30);
if (keyboard == 'q' || keyboard == 27)
break;
}
}
#include
#include
#include
#include
#include
#include
using namespace cv;
using namespace std;
int main(int argc, char **argv)
{
const string about =
"This sample demonstrates the camshift algorithm.\n"
"The example file can be downloaded from:\n"
" https://www.bogotobogo.com/python/OpenCV_Python/images/mean_shift_tracking/slow_traffic_small.mp4";
const string keys =
"{ h help | | print this help message }"
"{ @image || path to image file }" ;
CommandLineParser parser(argc, argv, keys);
parser.about(about);
if (parser.has("help"))
{
parser.printMessage();
return 0;
}
string filename = parser.get<string>("@image");
if (!parser.check())
{
parser.printErrors();
return 0;
}
VideoCapture capture(filename);
if (!capture.isOpened()){
//error in opening the video input
cerr << "Unable to open file!" << endl;
return 0;
}
Mat frame, roi, hsv_roi, mask;
// take first frame of the video
capture >> frame;
// setup initial location of window
Rect track_window(300, 200, 100, 50); // simply hardcoded the values
// set up the ROI for tracking
roi = frame(track_window);
cvtColor(roi, hsv_roi, COLOR_BGR2HSV);
inRange(hsv_roi, Scalar(0, 60, 32), Scalar(180, 255, 255), mask);
float range_[] = {0, 180};
const float* range[] = {range_};
Mat roi_hist;
int histSize[] = {180};
int channels[] = {0};
calcHist(&hsv_roi, 1, channels, mask, roi_hist, 1, histSize, range);
normalize(roi_hist, roi_hist, 0, 255, NORM_MINMAX);
// Setup the termination criteria, either 10 iteration or move by atleast 1 pt
TermCriteria term_crit(TermCriteria::EPS | TermCriteria::COUNT, 10, 1);
while(true){
Mat hsv, dst;
capture >> frame;
if (frame.empty())
break;
cvtColor(frame, hsv, COLOR_BGR2HSV);
calcBackProject(&hsv, 1, channels, roi_hist, dst, range);
// apply camshift to get the new location
RotatedRect rot_rect = CamShift(dst, track_window, term_crit);
// Draw it on image
Point2f points[4];
rot_rect.points(points);
for (int i = 0; i < 4; i++)
line(frame, points[i], points[(i+1)%4], 255, 2);
imshow("img2", frame);
int keyboard = waitKey(30);
if (keyboard == 'q' || keyboard == 27)
break;
}
}