人工神经网络理论及应用,人工智能神经网络论文

人工神经网络的论文

神经网络的是我的毕业论文的一部分4.人工神经网络人的思维有逻辑性和直观性两种不同的基本方式。

逻辑性的思维是指根据逻辑规则进行推理的过程;它先将信息化成概念,并用符号表示,然后,根据符号运算按串行模式进行逻辑推理。这一过程可以写成串行的指令,让计算机执行。

然而,直观性的思维是将分布式存储的信息综合起来,结果是忽然间产生想法或解决问题的办法。

这种思维方式的根本之点在于以下两点:1.信息是通过神经元上的兴奋模式分布在网络上;2.信息处理是通过神经元之间同时相互作用的动态过程来完成的。人工神经网络就是模拟人思维的第二种方式。

这是一个非线性动力学系统,其特色在于信息的分布式存储和并行协同处理。虽然单个神经元的结构极其简单,功能有限,但大量神经元构成的网络系统所能实现的行为却是极其丰富多彩的。

4.1人工神经网络学习的原理人工神经网络首先要以一定的学习准则进行学习,然后才能工作。

现以人工神经网络对手写“A”、“B”两个字母的识别为例进行说明,规定当“A”输入网络时,应该输出“1”,而当输入为“B”时,输出为“0”。

所以网络学习的准则应该是:如果网络做出错误的判决,则通过网络的学习,应使得网络减少下次犯同样错误的可能性。

首先,给网络的各连接权值赋予(0,1)区间内的随机值,将“A”所对应的图像模式输入给网络,网络将输入模式加权求和、与门限比较、再进行非线性运算,得到网络的输出。

在此情况下,网络输出为“1”和“0”的概率各为50%,也就是说是完全随机的。这时如果输出为“1”(结果正确),则使连接权值增大,以便使网络再次遇到“A”模式输入时,仍然能做出正确的判断。

如果输出为“0”(即结果错误),则把网络连接权值朝着减小综合输入加权值的方向调整,其目的在于使网络下次再遇到“A”模式输入时,减小犯同样错误的可能性。

如此操作调整,当给网络轮番输入若干个手写字母“A”、“B”后,经过网络按以上学习方法进行若干次学习后,网络判断的正确率将大大提高。

这说明网络对这两个模式的学习已经获得了成功,它已将这两个模式分布地记忆在网络的各个连接权值上。当网络再次遇到其中任何一个模式时,能够做出迅速、准确的判断和识别。

一般说来,网络中所含的神经元个数越多,则它能记忆、识别的模式也就越多。

4.2人工神经网络的优缺点人工神经网络由于模拟了大脑神经元的组织方式而具有了人脑功能的一些基本特征,为人工智能的研究开辟了新的途径,神经网络具有的优点在于:(1)并行分布性处理因为人工神经网络中的神经元排列并不是杂乱无章的,往往是分层或以一种有规律的序列排列,信号可以同时到达一批神经元的输入端,这种结构非常适合并行计算。

同时如果将每一个神经元看作是一个小的处理单元,则整个系统可以是一个分布式计算系统,这样就避免了以往的“匹配冲突”,“组合爆炸”和“无穷递归”等题,推理速度快。

(2)可学习性一个相对很小的人工神经网络可存储大量的专家知识,并且能根据学习算法,或者利用样本指导系统来模拟现实环境(称为有教师学习),或者对输入进行自适应学习(称为无教师学习),不断地自动学习,完善知识的存储。

(3)鲁棒性和容错性由于采用大量的神经元及其相互连接,具有联想记忆与联想映射能力,可以增强专家系统的容错能力,人工神经网络中少量的神经元发生失效或错误,不会对系统整体功能带来严重的影响。

而且克服了传统专家系统中存在的“知识窄台阶”问题。(4)泛化能力人工神经网络是一类大规模的非线形系统,这就提供了系统自组织和协同的潜力。它能充分逼近复杂的非线形关系。

当输入发生较小变化,其输出能够与原输入产生的输出保持相当小的差距。

(5)具有统一的内部知识表示形式,任何知识规则都可以通过对范例的学习存储于同一个神经网络的各连接权值中,便于知识库的组织管理,通用性强。

虽然人工神经网络有很多优点,但基于其固有的内在机理,人工神经网络也不可避免的存在自己的弱点:(1)最严重的问题是没能力来解释自己的推理过程和推理依据。

(2)神经网络不能向用户提出必要的询问,而且当数据不充分的时候,神经网络就无法进行工作。(3)神经网络把一切问题的特征都变为数字,把一切推理都变为数值计算,其结果势必是丢失信息。

(4)神经网络的理论和学习算法还有待于进一步完善和提高。4.3神经网络的发展趋势及在柴油机故障诊断中的可行性神经网络为现代复杂大系统的状态监测和故障诊断提供了全新的理论方法和技术实现手段。

神经网络专家系统是一类新的知识表达体系,与传统专家系统的高层逻辑模型不同,它是一种低层数值模型,信息处理是通过大量的简单处理元件(结点)之间的相互作用而进行的。

由于它的分布式信息保持方式,为专家系统知识的获取与表达以及推理提供了全新的方式。

它将逻辑推理与数值运算相结合,利用神经网络的学习功能、联想记忆功能、分布式并行信息处理功能,解决诊断系统中的不确定性知识表示、获取和并行推理等问题。

通过对经验样本的学习,将专家知识以权值和阈值的形式存储在网络中,并且利用网络的信息保持性来完成不精确诊断推理,较好地模拟了专家凭经验、直觉而不是复杂的计算的推理过程。

但是,该技术是一个多学科知识交叉应用的领域,是一个不十分成熟的学科。一方面,装备的故障相当复杂;另一方面,人工神经网络本身尚有诸多不足之处:(1)受限于脑科学的已有研究成果。

由于生理实验的困难性,目前对于人脑思维与记忆机制的认识还很肤浅。(2)尚未建立起完整成熟的理论体系。

目前已提出了众多的人工神经网络模型,归纳起来,这些模型一般都是一个由结点及其互连构成的有向拓扑网,结点间互连强度所构成的矩阵,可通过某种学习策略建立起来。但仅这一共性,不足以构成一个完整的体系。

这些学习策略大多是各行其是而无法统一于一个完整的框架之中。(3)带有浓厚的策略色彩。这是在没有统一的基础理论支持下,为解决某些应用,而诱发出的自然结果。(4)与传统计算技术的接口不成熟。

人工神经网络技术决不能全面替代传统计算技术,而只能在某些方面与之互补,从而需要进一步解决与传统计算技术的接口问题,才能获得自身的发展。

虽然人工神经网络目前存在诸多不足,但是神经网络和传统专家系统相结合的智能故障诊断技术仍将是以后研究与应用的热点。它最大限度地发挥两者的优势。

神经网络擅长数值计算,适合进行浅层次的经验推理;专家系统的特点是符号推理,适合进行深层次的逻辑推理。

智能系统以并行工作方式运行,既扩大了状态监测和故障诊断的范围,又可满足状态监测和故障诊断的实时性要求。既强调符号推理,又注重数值计算,因此能适应当前故障诊断系统的基本特征和发展趋势。

随着人工神经网络的不断发展与完善,它将在智能故障诊断中得到广泛的应用。根据神经网络上述的各类优缺点,目前有将神经网络与传统的专家系统结合起来的研究倾向,建造所谓的神经网络专家系统。

理论分析与使用实践表明,神经网络专家系统较好地结合了两者的优点而得到更广泛的研究和应用。离心式制冷压缩机的构造和工作原理与离心式鼓风机极为相似。

但它的工作原理与活塞式压缩机有根本的区别,它不是利用汽缸容积减小的方式来提高汽体的压力,而是依靠动能的变化来提高汽体压力。

离心式压缩机具有带叶片的工作轮,当工作轮转动时,叶片就带动汽体运动或者使汽体得到动能,然后使部分动能转化为压力能从而提高汽体的压力。

这种压缩机由于它工作时不断地将制冷剂蒸汽吸入,又不断地沿半径方向被甩出去,所以称这种型式的压缩机为离心式压缩机。其中根据压缩机中安装的工作轮数量的多少,分为单级式和多级式。

如果只有一个工作轮,就称为单级离心式压缩机,如果是由几个工作轮串联而组成,就称为多级离心式压缩机。在空调中,由于压力增高较少,所以一般都是采用单级,其它方面所用的离心式制冷压缩机大都是多级的。

单级离心式制冷压缩机的构造主要由工作轮、扩压器和蜗壳等所组成。

压缩机工作时制冷剂蒸汽由吸汽口轴向进入吸汽室,并在吸汽室的导流作用引导由蒸发器(或中间冷却器)来的制冷剂蒸汽均匀地进入高速旋转的工作轮3(工作轮也称叶轮,它是离心式制冷压缩机的重要部件,因为只有通过工作轮才能将能量传给汽体)。

汽体在叶片作用下,一边跟着工作轮作高速旋转,一边由于受离心力的作用,在叶片槽道中作扩压流动,从而使汽体的压力和速度都得到提高。

由工作轮出来的汽体再进入截面积逐渐扩大的扩压器4(因为汽体从工作轮流出时具有较高的流速,扩压器便把动能部分地转化为压力能,从而提高汽体的压力)。汽体流过扩压器时速度减小,而压力则进一步提高。

经扩压器后汽体汇集到蜗壳中,再经排气口引导至中间冷却器或冷凝器中。

二、离心式制冷压缩机的特点与特性离心式制冷压缩机与活塞式制冷压缩机相比较,具有下列优点:(1)单机制冷量大,在制冷量相同时它的体积小,占地面积少,重量较活塞式轻5~8倍。

(2)由于它没有汽阀活塞环等易损部件,又没有曲柄连杆机构,因而工作可靠、运转平稳、噪音小、操作简单、维护费用低。(3)工作轮和机壳之间没有摩擦,无需润滑。

故制冷剂蒸汽与润滑油不接触,从而提高了蒸发器和冷凝器的传热性能。(4)能经济方便的调节制冷量且调节的范围较大。(5)对制冷剂的适应性差,一台结构一定的离心式制冷压缩机只能适应一种制冷剂。

(6)由于适宜采用分子量比较大的制冷剂,故只适用于大制冷量,一般都在25~30万大卡/时以上。如制冷量太少,则要求流量小,流道窄,从而使流动阻力大,效率低。

但近年来经过不断改进,用于空调的离心式制冷压缩机,单机制冷量可以小到10万大卡/时左右。制冷与冷凝温度、蒸发温度的关系。

由物理学可知,回转体的动量矩的变化等于外力矩,则T=m(C2UR2-C1UR1)两边都乘以角速度ω,得Tω=m(C2UωR2-C1UωR1)也就是说主轴上的外加功率N为:N=m(U2C2U-U1C1U)上式两边同除以m则得叶轮给予单位质量制冷剂蒸汽的功即叶轮的理论能量头。

U2C2ω2C2UR1R2ω1C1U1C2rβ离心式制冷压缩机的特性是指理论能量头与流量之间变化关系,也可以表示成制冷W=U2C2U-U1C1U≈U2C2U(因为进口C1U≈0)又C2U=U2-C2rctgβC2r=Vυ1/(A2υ2)故有W=U22(1-Vυ1ctgβ)A2υ2U2式中:V—叶轮吸入蒸汽的容积流量(m3/s)υ1υ2——分别为叶轮入口和出口处的蒸汽比容(m3/kg)A2、U2—叶轮外缘出口面积(m2)与圆周速度(m/s)β—叶片安装角由上式可见,理论能量头W与压缩机结构、转速、冷凝温度、蒸发温度及叶轮吸入蒸汽容积流量有关。

对于结构一定、转速一定的压缩机来说,U2、A2、β皆为常量,则理论能量头W仅与流量V、蒸发温度、冷凝温度有关。

按照离心式制冷压缩机的特性,宜采用分子量比较大的制冷剂,目前离心式制冷机所用的制冷剂有F—11、F—12、F—22、F—113和F—114等。

我国目前在空调用离心式压缩机中应用得最广泛的是F—11和F—12,且通常是在蒸发温度不太低和大制冷量的情况下,选用离心式制冷压缩机。

此外,在石油化学工业中离心式的制冷压缩机则采用丙烯、乙烯作为制冷剂,只有制冷量特别大的离心式压缩机才用氨作为制冷剂。

三、离心式制冷压缩机的调节离心式制冷压缩机和其它制冷设备共同构成一个能量供给与消耗的统一系统。

制冷机组在运行时,只有当通过压缩机的制冷剂的流量与通过设备的流量相等时,以及压缩机所产生的能量头与制冷设备的阻力相适应时,制冷系统的工况才能保持稳定。

但是制冷机的负荷总是随外界条件与用户对冷量的使用情况而变化的,因此为了适应用户对冷负荷变化的需要和安全经济运行,就需要根据外界的变化对制冷机组进行调节,离心式制冷机组制冷量的调节有:1°改变压缩机的转速;2°采用可转动的进口导叶;3°改变冷凝器的进水量;4°进汽节流等几种方式,其中最常用的是转动进口导叶调节和进汽节流两种调节方法。

所谓转动进口导叶调节,就是转动压缩机进口处的导流叶片以使进入到叶轮去的汽体产生旋绕,从而使工作轮加给汽体的动能发生变化来调节制冷量。

所谓进汽节流调节,就是在压缩机前的进汽管道上安装一个调节阀,如要改变压缩机的工况时,就调节阀门的大小,通过节流使压缩机进口的压力降低,从而实现调节制冷量。

离心式压缩机制冷量的调节最经济有效的方法就是改变进口导叶角度,以改变蒸汽进入叶轮的速度方向(C1U)和流量V。但流量V必须控制在稳定工作范围内,以免效率下降。

谷歌人工智能写作项目:神经网络伪原创

专业技术人员科研方法与论文写作的考试答案

文案狗

专业技术人员科研方法与论文写作考试答案专业技术人员科技论文写作试卷一考试会员名:山花烂漫客观题得分:97主观题得分:总分:97一、单选题(每题1分,共15题)151、现代物理学的开创者和奠基人是:A、爱因斯坦B、牛顿C、诺贝尔答案:A2、衡量国家科技领先的标志之一是:A、获诺贝尔奖的人数B、国民经济总产值C、人口数量答案:A3、衡量一个人的技术水平的高低之一是:A、论文B、家产C、经历答案:A4、理论要不要经过实验验证:A、一切理论都要B、有些理论不一定要答案:B5、检验理论正确的实验是必须能够重演的:A、是B、不一定C、不是答案:A6、称赞你的论文的人都是:A、坚持真理的人B、认同你的观点的人C、奉承你的人答案:B7、一篇论文其关键词可以选择几个:A、两个B、3~8个C、9个以上答案:B8、论文引言就是:A、前言B、绪论C、引论答案:C9、参考文献的编号一律用什么括号括起:A、大括号B、中括号C、小括号答案:B10、参考文献号一律用:A、阿拉伯数字B、汉字C、英文答案:A11、论文中对重要的公式:A、应编号B、不应编号答案:A12、论文中使用别人公开发表的结论,并注明出处的属于:A、引用B、抄袭C、剽窃答案:A13、论文是如何写出的:A、研究后写出的B、编写出的C、从书上抄来的答案:A14、博士学位论文至少应有:A、创新点B、新理论答案:A15、论文中对表的题目要求为:A、表的题目在表上部B、表的题目在表下部C、随便什么位置答案:B二、案例分析题(每题5分,共5题)25.0116、在一篇题目为《目标运动分析新论》论文中,论文摘要是:“在我的《TMA理论》那本书中,介绍了TMA的经典方法,在本论文里,主要叙述目标运动分析的几种新的方法,它们是:1)识别-滤波-控制原理;2)交互多模型方法;3)多站信息融合的方法。

”(1)、上述摘要犯了那几方面的毛病?

A、使用“我的”第一人称B、使用了缩略语TMAC、前两句是过去研究信息,应删掉D、没有交代成果与结论E、以上全部是答案:E17、以下是《人工神经网络在传感器目标识别中的应用》论文的目次:一.概述二.数学基础知识三.传感器基础知识四.人工神经网络简介五.人工神经网络在目标识别中的应用六.仿真七.结论八.致谢九.参考文献(1)、它是一种仿教科书式的论文,其在目次上存在的主要问题是A、概述的设置B、数学基础的介绍C、传感器基础的介绍D、“人工神经网络在目标识别中的应用”篇幅比例偏少答案:D18、一篇好的论文主要应该包括:第一,概述该题目国内外的研究状况;第二,用大量的篇幅撰写自己的理论、方法(包括方案设计等);第三,再用大量的篇幅写自己的试验、实验或仿真结果;第四,给出论文研究结论。

现有一篇《人工神经网络在传感器目标识别中的应用》的论文,作者在论文目次中草拟了以下几个方面:一.概述二.数学基础知识三.传感器基础知识四.人工神经网络简介五.人工神经网络在目标识别中的应用六.仿真七.结论八.致谢九.参考文献(1)、请根据上述要求,选定目次安排较合理的一个:A、一概述;二预备知识(包括所要用的数学、传感器、人工神经网络基本的知识要点);三理论、方法(包括方案设计等);四试验或仿真结果;五结论;六致谢;七参考文献。

B、一概述;二.数学基础知识;三.传感器基础知识;四.人工神经网络简介;五.人工神经网络在目标识别中的应用;六.仿真;七.结论;八.致谢;九.参考文献。

C、一概述;二.数学基础知识;三.传感器基础知识;四.人工神经网络简介;五.人工神经网络在目标识别中的应用;六.仿真;七.结论D、一概述;二预备知识(包括所要用的数学、传感器、人工神经网络基本的知识要点);三理论、方法(包括方案设计等);四试验或仿真结果;五结论答案:A19、论文题名青少年足球运动员倾向性的不同因果模型摘要:借鉴Bcanlan的运动倾向性因果模型及其调查问卷来分析我国青少年足球运动员运动倾向性的影响因素。

对北京市252名青少年足球运动员施测结果的分析表明:运动倾向性五因素模型比较符合北京市青少年足球运动员,其中运动乐趣、个人投入、参与机会是主要影响因素,而社会约束几乎无作用。

(1)、从上述内容,可以反映出摘要的基本要素主要由(ABCD)等几部分组成。

A、对象B、方法C、成果D、结论E、设计、特点F、以上都是答案:F20、论文题名:液压式固有频率可控动力消振器的研究(引言):动力消振器是一个附加于主振系上的由质量和弹簧组成的振动系统。

当其固有频率与主振系的振动频率相等时,主振系便不发生振动。由于动力消振器具有良好的消振效果,自本世纪初发明以来,已得到了广泛应用。

但传统动力消振器的缺点在于其固有频率固定不变,不能在使用过程中加以调节,更不能随主振系振动频率的变化对它进行控制,因而它只适用于消除基频基本不变的振动。

对于更为常见的频率经常改变的振动系统,使用传统动力消振器不仅收不到良好的消振效果,反而会招致更大的危害。

笔者提出一种可以用于消除变频振动的新方法,即采用液压式固有频率可控动力消振器来跟踪振动频率的变化,使之在变频条件下达到良好的消振效果。实验表明,这是一种很有前途的消振方法。

(1)、引言第一段反映的是A、介绍研究对象及其基本特征B、说明研究对象存在的问题,即前人研究的不足,亦说明了本研究的理由和背景C、本研究的成果及其意义答案:A(2)、引言第二段反映的是A、介绍研究对象及其基本特征B、说明研究对象存在的问题,即前人研究的不足,亦说明了本研究的理由和背景C、本研究的成果及其意义答案:B(3)、引言第三段反映的是A、介绍研究对象及其基本特征B、说明研究对象存在的问题,即前人研究的不足,亦说明了本研究的理由和背景C、本研究的成果及其意义答案:C三、多选题(每题2分,共20题)4021、实验的目的是验证理论与方法的:A、正确性B、可行性C、有效性答案:A,B,C22、思维清晰主要体现在:A、作者思路和思想上B、语言文字上C、科研三步曲上D、论文目录构架中答案:A,C,D23、摘要的四要素是:A、对象B、方法C、成果D、结论答案:A,B,C,D24、论文署名是为了:A、扬名B、文责自负C、记录作者劳动成果D、便于联系答案:B,C,D25、关键词可以在下面选择:A、论文标题里B、论文内容里C、论文以外的任何词语答案:A,B26、引言内容包括研究的A、理由B、目的C、背景D、前人工作E、理论依据和实验基础F、预期的结果答案:A,B,C,D,E,F27、论文中应该致谢的人员是:A、指导老师B、对论文提供帮助和做过贡献的单位和个人C、资金资助单位D、对论文做过技术辅助工作的人E、与论文毫不相干的领导答案:A,B,C,D28、在论文写作中不正当的手段有:A、造假B、剽窃C、抄袭D、引用答案:A,B,C29、书以性质分类为:A、著B、编著C、编D、译E、编译答案:A,B,C,D,E30、研究生学位论文题目确定方式有:A、老师选B、自己选C、师生商定答案:A,B,C31、撰写的结论应达到的要求是A、概括准确,措词严谨B、明确具体,简短精练C、不作自我评价D、需要作自我评价答案:A,B,C32、对正文部分写作的总的要求是A、明晰B、准确C、完备D、简洁答案:A,B,C,D33、论证是由()个环节组成的。

A、论点B、论据C、论证方式D、结论答案:A,B,C34、选择材料时应遵循的原则A、必要而充分B、真实而准确C、典型而新颖答案:A,B,C35、科技论文主题的基本要求是A、新颖B、深刻C、集中D、鲜明答案:A,B,C,D36、引言中要写的内容大致有如下几项A、研究的理由、目的和背景B、理论依据、实验基础和研究方法C、预期的结果及其地位、作用和意义答案:A,B,C37、引言的写作要求是()A、言简意赅,突出重点B、开门见山,不绕圈子C、尊重科学,不落俗套D、如实评述,防止吹嘘自己和贬低别人答案:A,B,C,D38、摘要的写作要求是()A、用第三人称B、简短精练,明确具体C、格式要规范D、文字表达上应符合“语言通顺,结构严谨,标点符号准确”的要求答案:A,B,C,D39、摘要的分类主要有()A、报道性摘要B、指示性摘要C、报道—指示性摘要答案:A,B,C40、科技论文须满足的写作要求是()A、创新性或独创性B、理论性或学术性C、科学性和准确性D、规范性和可读性答案:A,B,C,D四、判断题(每题1分,共20题)1741、论文是科学技术发展的记录答案:正确42、论文是科学技术成果的载体答案:正确43、论文是科学技术强国的标志之一答案:正确44、论文是职业道德规范检验的试金石答案:不正确45、论文对个人是不重要的答案:不正确46、论文对社会是重要的答案:正确47、专业技术人员职称评定,论文是必要条件,但不是充分条件答案:正确48、专题评论是论文的一种类型答案:不正确49、随笔是论文的一种类型答案:正确50、看了别人的几篇文章,就可以轻而易举的写出综合评论论文答案:不正确51、理论、原理、方法、算法、实施步骤是论文的主要部分答案:正确52、上水平的论文成果应该是:前人没有发现的规律、定律、命题类型定理,或是对前人重大理论成果的实验验证,或是对某些重要猜想给出的证明答案:正确53、只要论文表达了你的思想、观点,解决了你所提出的问题,给出了足够的证据,包括理论、方法、实验等方面,语言表达有比较清楚,就可以定稿答案:不正确54、写作格式十二款是:1)题名;2)作者姓名与单位;3)摘要;4)关键词5)外文摘要与关键词;6)中图分类号、文献标识码;7)引言;8)正文;9)讨论;10)结论与有待研究的问题;11)鸣谢;12)参考文献。

答案:正确55、论文讨论部分的结构,应包含的五方面的内容是:1)主要发现;2)本研究的长处和短处;3)同其他研究的比较;4)研究的意义;5)未解决的问题及今后的研究方向。

答案:正确56、参考文献引用报纸的格式是:作者.论文题目.译者.报纸名,年.月.日答案:正确57、论文应该写出研究工作的时间、地点、人员、事件、过程、成绩与缺点、经验与教训等答案:不正确58、论文中文的题目、名称最好不超过20个字。

答案:正确59、撰写论文的基本要求是思维清晰,叙述完整,条理逻辑,立论公认,表达准确,内容客观,语言简练,科学写作。

答案:正确60、研究生论文常犯的错误有:a概念不清;b推导有漏洞;c数学与物理不符;d没有条理、逻辑性不强。答案:正确具体不知道考卷试题一样不?你可以在百度搜搜其他的!

多掌握点!祝顺利通过!参考资料:百度搜索的。

学校让写关于Atkinson循环发动机人工神经网络模型的研究的论文

[摘要]用GT-Power软件建立了压缩比为10.6的1.8L的Otto循环发动机仿真模型,并在此基础上建立用于Atkinson循环发动机设计和优化的人工神经网络模型。

应用拉丁超立方采样算法进行实验设计,用GT-Power对各实验点进行计算,得到用于神经网络训练和测试的实验数据集。

通过MATLAB/GT-Power耦合的自动化平台进行训练和测试数据的采集以及神经网络建模和优选。

结果表明,建立的Atkinson循环发动机神经网络模型具有较高的预测精度,可用于Atkinson循环发动机的进一步设计和优化工作。

关键词:Atkinson循环发动机;实验设计;神经网络;MATLAB/GT-Power耦合平台  AStudyontheArtificialNeuralNetworkModelforanAtkinsonCycleEngine[Abstract]Themodelforal.8LOttocycleenginewithacompressionratioof10.6isbuiltwithGT-Powersoftware,basedonwhichanartificialneuralnetwork(ANN)modelisestablishedforsubsequentdesignandoptimizationofanAtkinsoncycleengine.Adesignofexperiment(DOE)withLatinhypercubesamplingalgorithmisperformedandallexperimentalpointsarecalculatedbyGT-PowertoobtaintheexperimentaldatasetforANNtrainingandtest.ThecollectionoftrainingandtestdataaswellasthemodelingandselectionofANNmodelarecamedoutbyusingMATLAB/GT-Powercouplingplatform.TheresultsshowthattheANNmodelestablishedforAtkinsoncycleenginehasgoodpredictionaccuracyandcanbeusedforthefurtherdesignandoptimizationofAtkinsoncycleengine.Keywords:Atkinsoncycleengine;designofexperiments;neuralnetwork;MATLAB/GT-Powercouplingplatform前言由于Atkinson循环发动机采用复杂的铰链机构,应用成本高而没有受到重视。

近年来,可变气门正时(variablevalvetiming,VVT)机构的广泛应用和混合动力轿车的逐渐普及,对Atkinson循环发动机的研究越来越多。

Atkinson循环发动机采用比传统Otto循环发动机更大的几何压缩比,因而须利用进气门推迟关闭降低有效压缩比以避免爆燃。进气门推迟关闭又会减小有效排量,降低发动机的动力性能。

此外,进、排气门重叠角、进气门推迟角、几何压缩比和点火角等交互影响发动机的爆燃倾向,以至于影响发动机最终的动力性能和燃油经济性。

设计和操作变量间高度耦合并交互影响发动机的动力性和燃油经济性,增加了确定最佳的几何压缩比和进行操作参数优化的难度。若完全通过GT-Power计算或反复的卖验进行设计和优化,则较为繁琐且成本较高。

人工神经网络(artificialneuralnetwork,ANN)是一种模拟人脑学习机制的人工智能技术,具有高度非线性的特点,可以用来建立精确的发动机数学模型,并作为GT-Power的替代模型用于发动机性能预测,和用于操作变量的优化。

本文中介绍了原型Otto循环发动机的GT-Power建模,并利用拉丁超立方采样算法进行仿真实验设计;介绍了基于MATLAB/GT-Power耦合计算的自动化数据采集和神经网络建模平台的设计;利用由GT-Power计算得到的数据进行ANN训练和测试,并选择预测精度最好的ANN模型,以用于进一步的Atkinson循环发动机的设计和优化工作。

1发动机仿真模型的建立拟设计的Atkinson循环发动机在一台压缩比为10.6的1.8L双VVTOtto循环发动机的基础上进行开发。

图1为应用GT-Power软件建立的原型Otto循环发动机仿真模型,发动机技术参数见表l。

神经网络算法的人工神经网络

人工神经网络(ArtificialNeuralNetworks,ANN)系统是20世纪40年代后出现的。

它是由众多的神经元可调的连接权值连接而成,具有大规模并行处理、分布式信息存储、良好的自组织自学习能力等特点。

BP(BackPropagation)算法又称为误差反向传播算法,是人工神经网络中的一种监督式的学习算法。

BP神经网络算法在理论上可以逼近任意函数,基本的结构由非线性变化单元组成,具有很强的非线性映射能力。

而且网络的中间层数、各层的处理单元数及网络的学习系数等参数可根据具体情况设定,灵活性很大,在优化、信号处理与模式识别、智能控制、故障诊断等许多领域都有着广泛的应用前景。

人工神经元的研究起源于脑神经元学说。19世纪末,在生物、生理学领域,Waldeger等人创建了神经元学说。人们认识到复杂的神经系统是由数目繁多的神经元组合而成。

大脑皮层包括有100亿个以上的神经元,每立方毫米约有数万个,它们互相联结形成神经网络,通过感觉器官和神经接受来自身体内外的各种信息,传递至中枢神经系统内,经过对信息的分析和综合,再通过运动神经发出控制信息,以此来实现机体与内外环境的联系,协调全身的各种机能活动。

神经元也和其他类型的细胞一样,包括有细胞膜、细胞质和细胞核。但是神经细胞的形态比较特殊,具有许多突起,因此又分为细胞体、轴突和树突三部分。细胞体内有细胞核,突起的作用是传递信息。

树突是作为引入输入信号的突起,而轴突是作为输出端的突起,它只有一个。树突是细胞体的延伸部分,它由细胞体发出后逐渐变细,全长各部位都可与其他神经元的轴突末梢相互联系,形成所谓“突触”。

在突触处两神经元并未连通,它只是发生信息传递功能的结合部,联系界面之间间隙约为(15~50)×10米。突触可分为兴奋性与抑制性两种类型,它相应于神经元之间耦合的极性。

每个神经元的突触数目正常,最高可达10个。各神经元之间的连接强度和极性有所不同,并且都可调整、基于这一特性,人脑具有存储信息的功能。利用大量神经元相互联接组成人工神经网络可显示出人的大脑的某些特征。

人工神经网络是由大量的简单基本元件——神经元相互联接而成的自适应非线性动态系统。每个神经元的结构和功能比较简单,但大量神经元组合产生的系统行为却非常复杂。

人工神经网络反映了人脑功能的若干基本特性,但并非生物系统的逼真描述,只是某种模仿、简化和抽象。

与数字计算机比较,人工神经网络在构成原理和功能特点等方面更加接近人脑,它不是按给定的程序一步一步地执行运算,而是能够自身适应环境、总结规律、完成某种运算、识别或过程控制。

人工神经网络首先要以一定的学习准则进行学习,然后才能工作。现以人工神经网络对于写“A”、“B”两个字母的识别为例进行说明,规定当“A”输入网络时,应该输出“1”,而当输入为“B”时,输出为“0”。

所以网络学习的准则应该是:如果网络作出错误的的判决,则通过网络的学习,应使得网络减少下次犯同样错误的可能性。

首先,给网络的各连接权值赋予(0,1)区间内的随机值,将“A”所对应的图象模式输入给网络,网络将输入模式加权求和、与门限比较、再进行非线性运算,得到网络的输出。

在此情况下,网络输出为“1”和“0”的概率各为50%,也就是说是完全随机的。这时如果输出为“1”(结果正确),则使连接权值增大,以便使网络再次遇到“A”模式输入时,仍然能作出正确的判断。

如果输出为“0”(即结果错误),则把网络连接权值朝着减小综合输入加权值的方向调整,其目的在于使网络下次再遇到“A”模式输入时,减小犯同样错误的可能性。

如此操作调整,当给网络轮番输入若干个手写字母“A”、“B”后,经过网络按以上学习方法进行若干次学习后,网络判断的正确率将大大提高。

这说明网络对这两个模式的学习已经获得了成功,它已将这两个模式分布地记忆在网络的各个连接权值上。当网络再次遇到其中任何一个模式时,能够作出迅速、准确的判断和识别。

一般说来,网络中所含的神经元个数越多,则它能记忆、识别的模式也就越多。(1)人类大脑有很强的自适应与自组织特性,后天的学习与训练可以开发许多各具特色的活动功能。

如盲人的听觉和触觉非常灵敏;聋哑人善于运用手势;训练有素的运动员可以表现出非凡的运动技巧等等。普通计算机的功能取决于程序中给出的知识和能力。显然,对于智能活动要通过总结编制程序将十分困难。

人工神经网络也具有初步的自适应与自组织能力。在学习或训练过程中改变突触权重值,以适应周围环境的要求。同一网络因学习方式及内容不同可具有不同的功能。

人工神经网络是一个具有学习能力的系统,可以发展知识,以致超过设计者原有的知识水平。

通常,它的学习训练方式可分为两种,一种是有监督或称有导师的学习,这时利用给定的样本标准进行分类或模仿;另一种是无监督学习或称无为导师学习,这时,只规定学习方式或某些规则,则具体的学习内容随系统所处环境(即输入信号情况)而异,系统可以自动发现环境特征和规律性,具有更近似人脑的功能。

(2)泛化能力泛化能力指对没有训练过的样本,有很好的预测能力和控制能力。特别是,当存在一些有噪声的样本,网络具备很好的预测能力。

(3)非线性映射能力当对系统对于设计人员来说,很透彻或者很清楚时,则一般利用数值分析,偏微分方程等数学工具建立精确的数学模型,但当对系统很复杂,或者系统未知,系统信息量很少时,建立精确的数学模型很困难时,神经网络的非线性映射能力则表现出优势,因为它不需要对系统进行透彻的了解,但是同时能达到输入与输出的映射关系,这就大大简化设计的难度。

(4)高度并行性并行性具有一定的争议性。承认具有并行性理由:神经网络是根据人的大脑而抽象出来的数学模型,由于人可以同时做一些事,所以从功能的模拟角度上看,神经网络也应具备很强的并行性。

多少年以来,人们从医学、生物学、生理学、哲学、信息学、计算机科学、认知学、组织协同学等各个角度企图认识并解答上述问题。

在寻找上述问题答案的研究过程中,这些年来逐渐形成了一个新兴的多学科交叉技术领域,称之为“神经网络”。神经网络的研究涉及众多学科领域,这些领域互相结合、相互渗透并相互推动。

不同领域的科学家又从各自学科的兴趣与特色出发,提出不同的问题,从不同的角度进行研究。

下面将人工神经网络与通用的计算机工作特点来对比一下:若从速度的角度出发,人脑神经元之间传递信息的速度要远低于计算机,前者为毫秒量级,而后者的频率往往可达几百兆赫。

但是,由于人脑是一个大规模并行与串行组合处理系统,因而,在许多问题上可以作出快速判断、决策和处理,其速度则远高于串行结构的普通计算机。

人工神经网络的基本结构模仿人脑,具有并行处理特征,可以大大提高工作速度。人脑存贮信息的特点为利用突触效能的变化来调整存贮内容,也即信息存贮在神经元之间连接强度的分布上,存贮区与计算机区合为一体。

虽然人脑每日有大量神经细胞死亡(平均每小时约一千个),但不影响大脑的正常思维活动。

普通计算机是具有相互独立的存贮器和运算器,知识存贮与数据运算互不相关,只有通过人编出的程序使之沟通,这种沟通不能超越程序编制者的预想。元器件的局部损坏及程序中的微小错误都可能引起严重的失常。

心理学家和认知科学家研究神经网络的目的在于探索人脑加工、储存和搜索信息的机制,弄清人脑功能的机理,建立人类认知过程的微结构理论。

生物学、医学、脑科学专家试图通过神经网络的研究推动脑科学向定量、精确和理论化体系发展,同时也寄希望于临床医学的新突破;信息处理和计算机科学家研究这一问题的目的在于寻求新的途径以解决不能解决或解决起来有极大困难的大量问题,构造更加逼近人脑功能的新一代计算机。

人工神经网络早期的研究工作应追溯至上世纪40年代。下面以时间顺序,以著名的人物或某一方面突出的研究成果为线索,简要介绍人工神经网络的发展历史。

1943年,心理学家W·Mcculloch和数理逻辑学家W·Pitts在分析、总结神经元基本特性的基础上首先提出神经元的数学模型。此模型沿用至今,并且直接影响着这一领域研究的进展。

因而,他们两人可称为人工神经网络研究的先驱。1945年冯·诺依曼领导的设计小组试制成功存储程序式电子计算机,标志着电子计算机时代的开始。

1948年,他在研究工作中比较了人脑结构与存储程序式计算机的根本区别,提出了以简单神经元构成的再生自动机网络结构。

但是,由于指令存储式计算机技术的发展非常迅速,迫使他放弃了神经网络研究的新途径,继续投身于指令存储式计算机技术的研究,并在此领域作出了巨大贡献。

虽然,冯·诺依曼的名字是与普通计算机联系在一起的,但他也是人工神经网络研究的先驱之一。50年代末,F·Rosenblatt设计制作了“感知机”,它是一种多层的神经网络。

这项工作首次把人工神经网络的研究从理论探讨付诸工程实践。当时,世界上许多实验室仿效制作感知机,分别应用于文字识别、声音识别、声纳信号识别以及学习记忆问题的研究。

然而,这次人工神经网络的研究高潮未能持续很久,许多人陆续放弃了这方面的研究工作,这是因为当时数字计算机的发展处于全盛时期,许多人误以为数字计算机可以解决人工智能、模式识别、专家系统等方面的一切问题,使感知机的工作得不到重视;其次,当时的电子技术工艺水平比较落后,主要的元件是电子管或晶体管,利用它们制作的神经网络体积庞大,价格昂贵,要制作在规模上与真实的神经网络相似是完全不可能的;另外,在1968年一本名为《感知机》的著作中指出线性感知机功能是有限的,它不能解决如异感这样的基本问题,而且多层网络还不能找到有效的计算方法,这些论点促使大批研究人员对于人工神经网络的前景失去信心。

60年代末期,人工神经网络的研究进入了低潮。另外,在60年代初期,Widrow提出了自适应线性元件网络,这是一种连续取值的线性加权求和阈值网络。后来,在此基础上发展了非线性多层自适应网络。

当时,这些工作虽未标出神经网络的名称,而实际上就是一种人工神经网络模型。随着人们对感知机兴趣的衰退,神经网络的研究沉寂了相当长的时间。

80年代初期,模拟与数字混合的超大规模集成电路制作技术提高到新的水平,完全付诸实用化,此外,数字计算机的发展在若干应用领域遇到困难。这一背景预示,向人工神经网络寻求出路的时机已经成熟。

美国的物理学家Hopfield于1982年和1984年在美国科学院院刊上发表了两篇关于人工神经网络研究的论文,引起了巨大的反响。人们重新认识到神经网络的威力以及付诸应用的现实性。

随即,一大批学者和研究人员围绕着Hopfield提出的方法展开了进一步的工作,形成了80年代中期以来人工神经网络的研究热潮。

1985年,Ackley、Hinton和Sejnowski将模拟退火算法应用到神经网络训练中,提出了Boltzmann机,该算法具有逃离极值的优点,但是训练时间需要很长。

1986年,Rumelhart、Hinton和Williams提出了多层前馈神经网络的学习算法,即BP算法。它从证明的角度推导算法的正确性,是学习算法有理论依据。从学习算法角度上看,是一个很大的进步。

1988年,Broomhead和Lowe第一次提出了径向基网络:RBF网络。总体来说,神经网络经历了从高潮到低谷,再到高潮的阶段,充满曲折的过程。

神经网络Hopfield模型

一、Hopfield模型概述1982年,美国加州工学院J.Hopfield发表一篇对人工神经网络研究颇有影响的论文。他提出了一种具有相互连接的反馈型人工神经网络模型——Hopfield人工神经网络。

Hopfield人工神经网络是一种反馈网络(RecurrentNetwork),又称自联想记忆网络。

其目的是为了设计一个网络,存储一组平衡点,使得当给网络一组初始值时,网络通过自行运行而最终收敛到所存储的某个平衡点上。

Hopfield网络是单层对称全反馈网络,根据其激活函数的选取不同,可分为离散型Hopfield网络(DiscreteHopfieldNeuralNetwork,简称DHNN)和连续型Hopfield网络(ContinueHopfieldNeuralNetwork,简称CHNN)。

离散型Hopfield网络的激活函数为二值型阶跃函数,主要用于联想记忆、模式分类、模式识别。这个软件为离散型Hopfield网络的设计、应用。

二、Hopfield模型原理离散型Hopfield网络的设计目的是使任意输入矢量经过网络循环最终收敛到网络所记忆的某个样本上。

正交化的权值设计这一方法的基本思想和出发点是为了满足下面4个要求:1)保证系统在异步工作时的稳定性,即它的权值是对称的,满足wij=wji,i,j=1,2…,N;2)保证所有要求记忆的稳定平衡点都能收敛到自己;3)使伪稳定点的数目尽可能地少;4)使稳定点的吸引力尽可能地大。

正交化权值的计算公式推导如下:1)已知有P个需要存储的稳定平衡点x1,x2…,xP-1,xP,xp∈RN,计算N×(P-1)阶矩阵A∈RN×(P-1):A=(x1-xPx2-xP…xP-1-xP)T。

2)对A做奇异值分解A=USVT,U=(u1u2…uN),V=(υ1υ2…υP-1),中国矿产资源评价新技术与评价新模型Σ=diαg(λ1,λ2,…,λK),O为零矩阵。

K维空间为N维空间的子空间,它由K个独立的基组成:K=rαnk(A),设{u1u2…uK}为A的正交基,而{uK+1uK+2…uN}为N维空间的补充正交基。下面利用U矩阵来设计权值。

3)构造中国矿产资源评价新技术与评价新模型总的连接权矩阵为:Wt=Wp-T·Wm,其中,T为大于-1的参数,缺省值为10。

Wp和Wm均满足对称条件,即(wp)ij=(wp)ji,(wm)ij=(wm)ji,因而Wt中分量也满足对称条件。这就保证了系统在异步时能够收敛并且不会出现极限环。

4)网络的偏差构造为bt=xP-Wt·xP。下面推导记忆样本能够收敛到自己的有效性。

(1)对于输入样本中的任意目标矢量xp,p=1,2,…,P,因为(xp-xP)是A中的一个矢量,它属于A的秩所定义的K个基空间的矢量,所以必存在系数α1,α2,…,αK,使xp-xP=α1u1+α2u2+…+αKuK,即xp=α1u1+α2u2+…+αKuK+xP,对于U中任意一个ui,有中国矿产资源评价新技术与评价新模型由正交性质可知,上式中当i=j,;当i≠j,;对于输入模式xi,其网络输出为yi=sgn(Wtxi+bt)=sgn(Wpxi-T·Wmxi+xP-WpxP+T·WmxP)=sgn[Wp(xi-xP)-T·Wm(xi-xP)+xP]=sgn[(Wp-T·Wm)(xi-xP)+xP]=sgn[Wt(xi-xP)+xP]=sgn[(xi-xP)+xP]=xi。

(2)对于输入模式xP,其网络输出为yP=sgn(WtxP+bt)=sgn(WtxP+xP-WtxP)=sgn(xP)=xP。

(3)如果输入一个不是记忆样本的x,网络输出为y=sgn(Wtx+bt)=sgn[(Wp-T·Wm)(x-xP)+xP]=sgn[Wt(x-xP)+xP]。

因为x不是已学习过的记忆样本,x-xP不是A中的矢量,则必然有Wt(x-xP)≠x-xP,并且再设计过程中可以通过调节Wt=Wp-T·Wm中的参数T的大小来控制(x-xP)与xP的符号,以保证输入矢量x与记忆样本之间存在足够的大小余额,从而使sgn(Wtx+bt)≠x,使x不能收敛到自身。

用输入模式给出一组目标平衡点,函数HopfieldDesign()可以设计出Hopfield网络的权值和偏差,保证网络对给定的目标矢量能收敛到稳定的平衡点。

设计好网络后,可以应用函数HopfieldSimu(),对输入矢量进行分类,这些输入矢量将趋近目标平衡点,最终找到他们的目标矢量,作为对输入矢量进行分类。

三、总体算法1.Hopfield网络权值W[N][N]、偏差b[N]设计总体算法应用正交化权值设计方法,设计Hopfield网络;根据给定的目标矢量设计产生权值W[N][N],偏差b[N];使Hopfield网络的稳定输出矢量与给定的目标矢量一致。

1)输入P个输入模式X=(x[1],x[2],…,x[P-1],x[P])输入参数,包括T、h;2)由X[N][P]构造A[N][P-1]=(x[1]-x[P],x[2]-x[P],…,x[P-1]-x[P]);3)对A[N][P-1]作奇异值分解A=USVT;4)求A[N][P-1]的秩rank;5)由U=(u[1],u[2],…,u[K])构造Wp[N][N];6)由U=(u[K+1],…,u[N])构造Wm[N][N];7)构造Wt[N][N]=Wp[N][N]-T*Wm[N][N];8)构造bt[N]=X[N][P]-Wt[N][N]*X[N][P];9)构造W[N][N](9~13),构造W1[N][N]=h*Wt[N][N];10)求W1[N][N]的特征值矩阵Val[N][N](对角线元素为特征值,其余为0),特征向量矩阵Vec[N][N];11)求Eval[N][N]=diag{exp[diag(Val)]}[N][N];12)求Vec[N][N]的逆Invec[N][N];13)构造W[N][N]=Vec[N][N]*Eval[N][N]*Invec[N][N];14)构造b[N],(14~15),C1=exp(h)-1,C2=-(exp(-T*h)-1)/T;15)构造中国矿产资源评价新技术与评价新模型Uˊ——U的转置;16)输出W[N][N],b[N];17)结束。

2.Hopfield网络预测应用总体算法Hopfield网络由一层N个斜坡函数神经元组成。应用正交化权值设计方法,设计Hopfield网络。根据给定的目标矢量设计产生权值W[N][N],偏差b[N]。

初始输出为X[N][P],计算X[N][P]=f(W[N][N]*X[N][P]+b[N]),进行T次迭代,返回最终输出X[N][P],可以看作初始输出的分类。

3.斜坡函数中国矿产资源评价新技术与评价新模型输出范围[-1,1]。四、数据流图Hopfield网数据流图见附图3。

五、调用函数说明1.一般实矩阵奇异值分解(1)功能用豪斯荷尔德(Householder)变换及变形QR算法对一般实矩阵进行奇异值分解。

(2)方法说明设A为m×n的实矩阵,则存在一个m×m的列正交矩阵U和n×n的列正交矩阵V,使中国矿产资源评价新技术与评价新模型成立。

其中Σ=diag(σ0,σ1,…σp)p⩽min(m,n)-1,且σ0≥σ1≥…≥σp>0,上式称为实矩阵A的奇异值分解式,σi(i=0,1,…,p)称为A的奇异值。

奇异值分解分两大步:第一步:用豪斯荷尔德变换将A约化为双对角线矩阵。

即中国矿产资源评价新技术与评价新模型其中中国矿产资源评价新技术与评价新模型中的每一个变换Uj(j=0,1,…,k-1)将A中的第j列主对角线以下的元素变为0,而中的每一个变换Vj(j=0,1,…,l-1)将A中的第j行主对角线紧邻的右次对角线元素右边的元素变为0。

]]j具有如下形式:中国矿产资源评价新技术与评价新模型其中ρ为一个比例因子,以避免计算过程中的溢出现象与误差的累积,Vj是一个列向量。

即Vj=(υ0,υ1,…,υn-1),则中国矿产资源评价新技术与评价新模型其中中国矿产资源评价新技术与评价新模型第二步:用变形的QR算法进行迭代,计算所有的奇异值。

即:用一系列的平面旋转变换对双对角线矩阵B逐步变换成对角矩阵。

在每一次的迭代中,用变换中国矿产资源评价新技术与评价新模型其中变换将B中第j列主对角线下的一个非0元素变为0,同时在第j行的次对角线元素的右边出现一个非0元素;而变换Vj,j+1将第j-1行的次对角线元素右边的一个0元素变为0,同时在第j列的主对角线元素的下方出现一个非0元素。

由此可知,经过一次迭代(j=0,1,…,p-1)后,B′仍为双对角线矩阵。但随着迭代的进行。最后收敛为对角矩阵,其对角线上的元素为奇异值。

在每次迭代时,经过初始化变换V01后,将在第0列的主对角线下方出现一个非0元素。在变换V01中,选择位移植u的计算公式如下:中国矿产资源评价新技术与评价新模型最后还需要对奇异值按非递增次序进行排列。

在上述变换过程中,若对于某个次对角线元素ej满足|ej|⩽ε(|sj+1|+|sj|)则可以认为ej为0。若对角线元素sj满足|sj|⩽ε(|ej-1|+|ej|)则可以认为sj为0(即为0奇异值)。

其中ε为给定的精度要求。

(3)调用说明intbmuav(double*a,intm,intn,double*u,double*v,doubleeps,intka),本函数返回一个整型标志值,若返回的标志值小于0,则表示出现了迭代60次还未求得某个奇异值的情况。

此时,矩阵的分解式为UAVT;若返回的标志值大于0,则表示正常返回。形参说明:a——指向双精度实型数组的指针,体积为m×n。

存放m×n的实矩阵A;返回时,其对角线给出奇异值(以非递增次序排列),其余元素为0;m——整型变量,实矩阵A的行数;n——整型变量,实矩阵A的列数;u——指向双精度实型数组的指针,体积为m×m。

返回时存放左奇异向量U;υ——指向双精度实型数组的指针,体积为n×n。返回时存放右奇异向量VT;esp——双精度实型变量,给定的精度要求;ka——整型变量,其值为max(m,n)+1。

2.求实对称矩阵特征值和特征向量的雅可比过关法(1)功能用雅可比(Jacobi)方法求实对称矩阵的全部特征值与相应的特征向量。(2)方法说明雅可比方法的基本思想如下。设n阶矩阵A为对称矩阵。

在n阶对称矩阵A的非对角线元素中选取一个绝对值最大的元素,设为apq。

利用平面旋转变换矩阵R0(p,q,θ)对A进行正交相似变换:A1=R0(p,q,θ)TA,其中R0(p,q,θ)的元素为rpp=cosθ,rqq=cosθ,rpq=sinθ,rqp=sinθ,rij=0,i,j≠p,q。

如果按下式确定角度θ,中国矿产资源评价新技术与评价新模型则对称矩阵A经上述变换后,其非对角线元素的平方和将减少,对角线元素的平方和增加,而矩阵中所有元素的平方和保持不变。

由此可知,对称矩阵A每次经过一次变换,其非对角线元素的平方和“向零接近一步”。因此,只要反复进行上述变换,就可以逐步将矩阵A变为对角矩阵。

对角矩阵中对角线上的元素λ0,λ1,…,λn-1即为特征值,而每一步中的平面旋转矩阵的乘积的第i列(i=0,1,…,n-1)即为与λi相应的特征向量。

综上所述,用雅可比方法求n阶对称矩阵A的特征值及相应特征向量的步骤如下:1)令S=In(In为单位矩阵);2)在A中选取非对角线元素中绝对值最大者,设为apq;3)若|apq|<ε,则迭代过程结束。

此时对角线元素aii(i=0,1,…,n-1)即为特征值λi,矩阵S的第i列为与λi相应的特征向量。否则,继续下一步;4)计算平面旋转矩阵的元素及其变换后的矩阵A1的元素。

其计算公式如下中国矿产资源评价新技术与评价新模型5)S=S·R(p,q,θ),转(2)。

在选取非对角线上的绝对值最大的元素时用如下方法:首先计算实对称矩阵A的非对角线元素的平方和的平方根中国矿产资源评价新技术与评价新模型然后设置关口υ1=υ0/n,在非对角线元素中按行扫描选取第一个绝对值大于或等于υ1的元素αpq进行平面旋转变换,直到所有非对角线元素的绝对值均小于υ1为止。

再设关口υ2=υ1/n,重复这个过程。以此类推,这个过程一直作用到对于某个υk<ε为止。(3)调用说明voidcjcbj(double*a,intn,double*v,doubleeps)。

形参说明:a——指向双精度实型数组的指针,体积为n×n,存放n阶实对称矩阵A;返回时,其对角线存放n个特征值;n——整型变量,实矩阵A的阶数;υ——指向双精度实型数组的指针,体积为n×n,返回特征向量,其中第i列为与λi(即返回的αii,i=0,1,……,n-1)对应的特征向量;esp——双精度实型变量。

给定的精度要求。3.矩阵求逆(1)功能用全选主元高斯-约当(Gauss-Jordan)消去法求n阶实矩阵A的逆矩阵。

(2)方法说明高斯-约当法(全选主元)求逆的步骤如下:首先,对于k从0到n-1做如下几步:1)从第k行、第k列开始的右下角子阵中选取绝对值最大的元素,并记住此元素所在的行号和列号,再通过行交换和列交换将它交换到主元素位置上,这一步称为全选主元;2);3),i,j=0,1,…,n-1(i,j≠k);4)αij-,i,j=0,1,…,n-1(i,j≠k);5)-,i,j=0,1,…,n-1(i≠k);最后,根据在全选主元过程中所记录的行、列交换的信息进行恢复,恢复原则如下:在全选主元过程中,先交换的行、列后进行恢复;原来的行(列)交换用列(行)交换来恢复。

图8-4东昆仑—柴北缘地区基于HOPFIELD模型的铜矿分类结果图(3)调用说明intbrinv(double*a,intn)。本函数返回一个整型标志位。

若返回的标志位为0,则表示矩阵A奇异,还输出信息“err**notinv”;若返回的标志位不为0,则表示正常返回。形参说明:a——指向双精度实型数组的指针,体积为n×n。

存放原矩阵A;返回时,存放其逆矩阵A-1;n——整型变量,矩阵的阶数。六、实例实例:柴北缘—东昆仑地区铜矿分类预测。

选取8种因素,分别是重砂异常存在标志、水化异常存在标志、化探异常峰值、地质图熵值、Ms存在标志、Gs存在标志、Shdadlie到区的距离、构造线线密度。构置原始变量,并根据原始数据构造预测模型。

HOPFIELD模型参数设置:训练模式维数8,预测样本个数774,参数个数8,迭代次数330。结果分44类(图8-4,表8-5)。表8-5原始数据表及分类结果(部分)续表。

 

你可能感兴趣的:(人工智能,神经网络,深度学习)