利用手机摄像头采集图片运行ORB-SLAM2

一、ROS配置安装

二、ORB_SLAM2配置安装

可参考前文  

ROS仿真环境安装与配置_身在江湖的郭大侠的博客-CSDN博客

三、Android手机摄像头与ROS建立通信

GitHub有个开源的项目,可以通过wifi将摄像头捕捉到的图片传输到ROS,地址:

https://github.com/hitcm/Android_Camera-IMU

作者也给出了博文,

ROS实时采集Android的图像和IMU数据 - hitcm - 博客园

下载代码、安装工具包

git clone https://github.com/hitcm/Android_Camera-IMU.git

sudo apt-get install ros-melodic-imu-tools  # 按实际安装indigo、Kinetic 等安装对应的工具包

三个文件

Camera_Imu.apk安装到手机上,注意有的手机可能因为安装版本过高导致无法运行此程序,可以试着在手机上装一个虚拟软件如VMOS Pro,这个安卓版本是7.1可以运行,还有一个版本的apk

Releases · huaibovip/android_ros_sensors · GitHub

这个版本的apk带源码,大佬可以二次开发,但是此apk笔者并未试成功

手机和电脑要在同一局域网下,在实验前可以在手机上安装一个ping工具,确保电脑和手机的网络是互通的,笔者是虚拟机,为了让手机与虚拟机的网互通,这是把虚拟机的网络模式设为桥接模式利用手机摄像头采集图片运行ORB-SLAM2_第1张图片

 

 虚拟机打开

Terminal1 输入:

roscore

Android: 打开应用,在 在 IP Port 中修改 IP 地址为 PC的 IP地址,port不需要修改(PC 的 IP 可在 PC 终端输入 ifconfig 查看),之后点击 Connect,连接成功则进入相机界面。

Terminal 2 到下载git文件的目录打开android_cam-imu.launch:

cd Android_Camera-IMU      
roslaunch android_cam-imu.launch

这是会弹出一个Rviz界面:

如果要实时显示则

  • 如果要实时显示 image,需要 Add - By topic - 添加/camera/image_raw/image。
  • 如果要显示 imu,则需要 Add - By topic - 添加 imu,且在 Fix Frame 中 将 map 改为 imu。

利用手机摄像头采集图片运行ORB-SLAM2_第2张图片 

利用手机摄像头采集图片运行ORB-SLAM2_第3张图片 PS:

可以在Ubuntu里面用

rostopic list

查询订阅的主题,可以看到有订阅的图像和imu

 利用手机摄像头采集图片运行ORB-SLAM2_第4张图片

 

 手机摄像头标定

为了 ORB-SLAM2 准确运行,需要对手机摄像头进行标定。标定方式为:对棋盘格标定板进行各个方向的拍照,之后基于 OpenCV 进行标定。注意这里采集的图片需要和 ORB-SLAM2 程序读取到的一致,所以不能直接使用手机自带相机 app 拍照,因为手机会自动通过算法进行校正,而上述通信传输的是 raw images。因此,首先我们需要完成的任务是:采集并保存摄像头图像。

使用下图作为标定板(参考资料),可直接在电脑屏幕上显示,对其拍照即可。

利用手机摄像头采集图片运行ORB-SLAM2_第5张图片

注意:

  • 实验发现,使用长宽格数不一样的棋盘标定板效果更好。
  • 实验发现,标定板周围要是白色的才行,黑色的提取不出角点来(在电脑屏幕上显示标定板时尤其需要注意)。
  • 摄像头需要从不同方向拍摄棋盘格,可参考 OpenCV 安装目录下 samples/data 中的 left0x.jpg 系列标定图片。

采集并保存图片

目前没有找到直接保存的方法,所以我们选择写一个 ROS node 来接收手机传来的图像,再通过 OpenCV 进行显示和保存。

为了方便,我们选择直接在 ORB-SLAM2 的 ros_mono.cc 的代码基础上进行修改,在 ros_mono.cc 同一目录下写了个 ros_camera_capture.cc:

/**
* This file is to capture images from Android phone, for camera calibration
* This file is used with Android_Camera-IMU
*/

#include
#include
#include
#include

#include
#include 

#include

#include"../../../include/System.h"

using namespace std;

string save_dir = "PATH"; // 修改为自己保存图片的路径
int imgId = 0;

void GrabImage(const sensor_msgs::ImageConstPtr& msg);

int main(int argc, char **argv)
{

    std::cout << "To save the current frame, please press 'Q' or 'q' " << std::endl;
    std::cout << "The images will be saved to " <<  save_dir << std::endl;

    ros::init(argc, argv, "PClistener");
    ros::start();

    ros::NodeHandle nodeHandler;
    ros::Subscriber sub = nodeHandler.subscribe("/camera/image_raw", 1, GrabImage);

    ros::spin();

    ros::shutdown();

    return 0;
}

void GrabImage(const sensor_msgs::ImageConstPtr& msg)
{
    string imgname;
    cv_bridge::CvImageConstPtr cv_ptr;
    try
    {
        cv_ptr = cv_bridge::toCvShare(msg);
        cv::Mat img = cv_ptr->image;
        cv::imshow("img_name", img);

        char key = cv::waitKey(1);
        // press "q" to save the image 
        if(key == 'q' || key == 'Q'){  
            imgId++;
            imgname = "img_" + to_string(imgId) + ".jpg";
            cv::imwrite(save_dir + imgname, img);
            std::cout << "has saved image "<< imgId << " to " << save_dir << std::endl;
        }
    }
    catch (cv_bridge::Exception& e)
    {
        ROS_ERROR("cv_bridge exception: %s", e.what());
        return;
    }
}

注意捕捉图像存储地址换成自己的

另外,在 ORB_SLAM2/Examples/ROS/ORB_SLAM2 目录中的 CMakeLists.txt 中添加如下内容(添加在 # Node for monocular camera 上方即可):

# Node for capture images for camera calibration
rosbuild_add_executable(CameraCapture
src/ros_camera_capture.cc
)

target_link_libraries(CameraCapture
${LIBS}
)

之后重新编译 ORB_SLAM2 项目。

cd PATH/ORB_SLAM2
./build_ros.sh

使用方法:

Terminal 1:

roscore

手机进入 app 运行

Terminal 2: 在 Android_Camera-IMU 目录

roslaunch android_cam-imu.launch

(可以关掉 Rviz)

Terminal 3:

rosrun ORB_SLAM2 CameraCapture

鼠标选中弹出的图像框,按下 q 键保存图像。一定要多角度多捕捉几张图片,否则很难捕捉到关键点。像这样

利用手机摄像头采集图片运行ORB-SLAM2_第6张图片

 

进行标定

使用 OpenCV samples 中的代码实现。参考资料

标定例程

新建一个工作目录(文件夹)camera_calibration_opencv,将 OpenCV 安装目录中的 samples/cpp/tutorial_code/calib3d/camera_calibration 文件夹内的内容拷贝至该目录。

修改 VID5.xml

VID5.xml 中存储着标定图像的路径,所以要在 VID.xml 中添加所有标定图像的路径,eg:图片换成自己捕捉照片存储的位置




/home/ghj/Desktop/slam/pictureimg_1.jpg
/home/ghj/Desktop/slam/pictureimg_2.jpg
/home/ghj/Desktop/slam/pictureimg_3.jpg
/home/ghj/Desktop/slam/pictureimg_4.jpg
/home/ghj/Desktop/slam/pictureimg_5.jpg

修改 in_VID5.xml

表示棋盘格的宽和高,注意,这里的宽度和高度是指内部交叉点的个数,而不是方形格的个数。如上图棋盘的数据就是9和6。

 9
6

修改为每格的边长 (mm),拿尺子量。

20

修改 输入的VID5.xml 的路径(换成自己的))

"/home/ghj/Desktop/slam/camera_calibration_opencv/VID5.xml"

修改输出参数信息存储的地址(换成自己的)

  "/home/ghj/Desktop/slam/camera_calibration_opencv/out_camera_data.xml"

 此处原来是0,需要改为1,表示引入切向畸变参数(因为 ORB-SLAM2 中也引入了切向畸变参数),否则只有径向畸变参数。

 1 

其它地方应该不需要改动,想进一步了解可看其中的注释。




  
   9
  6
  
  
  20
  
  
  "CHESSBOARD"
  
  
  "/home/ghj/Desktop/slam/camera_calibration_opencv/VID5.xml"
  
  0
  
  
  100	
  
  
  25
  
   1 
  
  1
  
   1 
  
  
  "/home/ghj/Desktop/slam/camera_calibration_opencv/out_camera_data.xml"
  
  1
  
  1
  
  1
 

编译

在工作目录 camera_calibration_opencv 中新建 CMakeLists.txt:

project(Camera_Calibration)
set(CMAKE_CXX_STANDARD 11)

find_package(OpenCV 3.0 QUIET)
if(NOT OpenCV_FOUND)    
    find_package(OpenCV 2.4.3 QUIET)
    if(NOT OpenCV_FOUND)
        message(FATAL_ERROR "OpenCV > 2.4.3 not found.")
    endif()
endif()

include_directories(${OpenCV_INCLUDE_DIR})
add_executable(Camera_Calibration camera_calibration.cpp)
target_link_libraries(Camera_Calibration ${OpenCV_LIBS})

之后编译:

cd camera_calibration_opencv
mkdir build
cd build
cmake ..
make

运行,标定

cd camera_calibration_opencv
./build/Camera_Calibration ../in_VID5.xml

程序启动后会显示标定图像的角点提取情况,之后会显示校正后图像,一个一个全部关闭后才会保存标定参数至 out_camera_data.xml。

利用手机摄像头采集图片运行ORB-SLAM2_第7张图片

 标定结果写入camera_calibration/out_cam

利用手机摄像头采集图片运行ORB-SLAM2_第8张图片

 

  •  是相机内参矩阵,顺序为 fx, 0, cx; 0, fy, cy; 0, 0, 1。
  •  是畸变参数,其顺序为 k1, k2, p1, p2, k3。

之后在 ORB_SLAM2 中新建一个配置文件 mycam.yaml(建哪儿都行),将 TUM1.yaml 的内容拷贝过来,并把其中的 Camera 参数进行修改。

利用手机摄像头采集图片运行ORB-SLAM2_第9张图片

注意: 相机参数对 ORB-SLAM2 的运行效果有极大影响(尤其是初始化),所以标定过程须认真完成。

运行 ORB-SLAM2 Mono

Terminal 1:

roscore

手机进入 app 运行

Terminal 2: 在 Android_Camera-IMU 目录

roslaunch android_cam-imu.launch

(可以关掉 Rviz)

Terminal 3(加载的两个文件换成自己的):

rosrun ORB_SLAM2 Mono /home/ghj/ROS_SIM/src/ORB_SLAM2/Vocabulary/ORBvoc.txt /home/ghj/ROS_SIM/src/ORB_SLAM2/Examples/ROS/ORB_SLAM2/mycam.yaml

运行效果展示:利用手机摄像头采集图片运行ORB-SLAM2_第10张图片

 利用手机摄像头采集图片运行ORB-SLAM2_第11张图片利用手机摄像头采集图片运行ORB-SLAM2_第12张图片

注意: ORB-SLAM2 Mono 还是比较难以初始化的(其设置的初始化条件相对苛刻),在开始时,选择特征纹理丰富的区域,多上下左右平移相机,有利于初始化。

简化启动

上述启动步骤需要启动3个终端,挺麻烦的,所以可以选择写一个脚本来自动启动这3个终端。参考资料

新建 ORB_SLAM2_with_AndroidPhone.sh,在其中填入:

gnome-terminal --title="roscore" -x bash -c "roscore"
# 暂停 2s,保证几个不同终端的启动顺序
sleep 2s;  

gnome-terminal --title="AndroidPhone" -x bash -c "cd /home/ghj/Desktop/slam/Android_Camera-IMU; roslaunch android_cam-imu.launch"
sleep 2s;

gnome-terminal --title="ORB-SLAM2" -x bash -c "rosrun ORB_SLAM2 Mono /home/ghj/ROS_SIM/src/ORB_SLAM2/Vocabulary/ORBvoc.txt /home/ghj/ROS_SIM/src/ORB_SLAM2/Examples/ROS/ORB_SLAM2/mycam.yaml"

之后赋予权限(仅需一次):

chmod +x ORB_SLAM2_with_AndroidPhone.sh

运行:

./ORB_SLAM2_with_AndroidPhone.sh

即可一次性打开3个终端,并运行相关命令。之后手机再打开 app 就可以了。

注意: 此时终端运行结束后会自动退出,如果不想自动退出,可 在terminal点右键,选择Preferences然后找到Command,里面有一项When command exits,后面选择为Hold the terminal open。参考资料

 利用手机摄像头采集图片运行ORB-SLAM2_第13张图片

 

你可能感兴趣的:(SLAM,机器人)