- 校园打架行为识别检测系统 YOLOv5
燧机科技SuiJi
YOLO人工智能python计算机视觉开发语言
校园打架行为识别检测系统基于python深度学习框架+边缘分析技术,校园打架行为识别检测系统自动对校园监控视频图像信息进行分析识别。校园打架行为识别检测系统利用学校监控对校园、广场等区域进行实时监测,当监测到有人打架斗殴时,系统立即抓拍存档语音提醒,并将打架行为回传给学校监控后台,提醒后台人员及时处理打架情况。在YOLO系列算法中,针对不同的数据集,都需要设定特定长宽的锚点框。在网络训练阶段,模型
- <数据集>考场行为识别数据集<目标检测>
深度学习lover
深度学习数据集目标检测人工智能计算机视觉pythonYOLO
数据集格式:VOC+YOLO格式图片数量:2192张标注数量(xml文件个数):2192标注数量(txt文件个数):2192标注类别数:2标注类别名称:['cheating','good']序号类别名称图片数框数1cheating128214412good10671261使用标注工具:labelImg标注规则:对类别进行画水平矩形框图片示例:标注示例:
- 邮件服务器管理软件,U-Mail 邮件服务器软件(邮件系统)
weixin_39730587
邮件服务器管理软件
U-Mail是安全高速的全功能电子邮件服务器系统,融合强大的功能与简易高效的管理为一体,提供最佳的企业级邮箱服务器系统解决方案。内嵌顶级杀毒引擎;基于行为识别和热点等专利技术的反垃圾过滤引擎;终身免费升级;纯WEB管理;提供一站式全程服务!◇全球收发保证!即使您服务器的IP在对方的垃圾邮件黑名单中,邮件照发不误。◇邮件监控、收发审核!企业管理层可以根据实际的需要进行相关监控审核条件的设定。◇业界最
- 关于学生课堂行为识别算法
NineDays66
算法行为识别深度学习学生行为分析考试分析
目前基于针对学校做了一款考生行为识别算法,算法可以在服务器部署,也可以在前端设备如Jetson、RK等边缘设备运行,目前算法已经投入使用,算法效果如下目前算法在2080Ti服务器运行效率是150帧每秒算法运行平台模型大小吞吐量张/秒PC-2080TI50M150ARM-RK3399PRO10M10行为类别划分如下:学生未到、存在空位学生双手放在桌子下学生左、右看学生传纸条学生举手学生爬桌子睡觉学生
- 物业服务企业做好专业化,才能多元化
王海波w
物业服务企业做好专业化,才能谈未来发展的多元化。根据质量管理体系的标准,其中人员标准和管理标准尤为重要,很多企业只是做了标准化的表面文章,一个想要做出成绩的物业服务企业,要绝对深层次挖掘标准化内涵。CIS形象识别系统行为识别,是企业人力资源管理标准化的具体体现。图片发自App物业服务企业员工行为规范,仪容仪表,自然大方得体,符合工作需要及安全规则。行为举止,姿态端正,工作中做到走路轻,说话清,操作
- 代理IP技术在云函数中的创新应用与拓展空间
小文没烦恼
服务器linux运维pythontcp/ip
目录前言一、代理IP技术的基本概念和原理二、云函数的基本原理和优势1.弹性伸缩2.省时省力3.按需计费三、代理IP技术在云函数中的创新应用1.反爬虫技术2.访问安全性和隐私保护3.地理定位和访问控制四、代理IP技术在云函数中的拓展空间1.代理IP池的管理和优化2.用户行为分析和行为识别3.安全审计和访问控制五、代码实例六、总结前言随着云计算技术的发展和普及,云函数作为一种基于事件驱动的计算模型,已
- 多只动物3D姿态估计与行为识别系统
tzc_fly
论文阅读笔记人工智能
动物社会行为的量化是动物科学研究的重要步骤。虽然现有的深度学习方法已经实现了对常见动物的精确姿态估计、识别和行为分类,但由于缺乏注释良好的数据集,其应用依然受到挑战。因此该研究展示了一个计算框架,即社会行为图谱(SBeA,SocialBehaviorAtlas),用于克服由有限数据集引起的问题。SBeA使用数量很少的labelledframes进行多个动物的3D姿态估计,实现后续的无标签识别。SB
- 第一周文献阅读报告
半个轮子工
论文阅读物联网
文献阅读报告泛读1.《毫米波与太赫兹技术》2.《基于物联网的智能养老系统》3.《基于空间聚类的FMCW雷达双人行为识别方法》4.《太赫兹应用分析和展望》5.《车载毫米波雷达应用研究》6.《基于压力传感器的跌倒检测系统研究》7.《基于隐马尔可夫模型的老年人跌倒行为检测方法研究望》8.《矿用卡车毫米波雷达防碰撞系统的研究与应用》9.《基于YOLO网络的人体跌倒检测方法》10.《基于多传感器融合的老人跌
- 打击欺诈活动:如何利用羊毛盾API保护用户与业务安全
API小百科_APISpace
前言随着互联网的不断发展,欺诈活动也日益猖獗。针对企业和用户的欺诈行为可能导致财务损失、声誉受损以及用户信任的丧失。为了保护用户与业务安全,反欺诈技术成为了企业不可或缺的防线之一。在这方面,羊毛盾API作为一种智能反欺诈工具,发挥着越来越重要的作用。反欺诈(羊毛盾)API的作用image.png如何保护用户安全?1.欺诈行为识别反欺诈(羊毛盾)API通过收集和分析大量的用户行为数据,建立了模型和算
- 人类行为动作数据集大合集
地理探险家
用于深度学习的数据集行为动作人类数据集图像深度学习
最近收集了一大波关于人类行为动作的数据集,主要包括:动作识别、行为识别、活动预测、动作行为分类等数据集。废话不多说,接下来就给大家介绍这些数据集!!1、用于自动视频编辑的视频Blooper数据集用于自动视频编辑的视频Blooper数据集数据说明:根据网上的消息,基本的视频编辑每分钟需要30分钟到一个小时。这就不鼓励用户制作周期性的内容。目前,自动视频编辑仅限于视频增强和简单的机制,如沉默或鼓掌检测
- YOLO+SlowFast+DeepSORT 简单实现视频行为识别
AAI机器之心
YOLO音视频云计算openstack大数据深度学习python
前段时间刷短视频看到过别人用摄像头自动化监控员工上班状态,比如标注员工是不是离开了工位,在位置上是不是摸鱼。虽然是段子,但是这个是可以用识别技术实现一下,于是我在网上找,知道发现了SlowFast,那么下面就用SlowFast简单测试一下视频的行为识别。工具简介YOLOYOLO是一个基于深度学习神经网络的对象识别和定位算法,前面我也用v5s训练了标注的扑克牌,实现了图片或视频中的点数识别,这里就跳
- AI:116-基于深度学习的视频行为识别与分析
一见已难忘
精通AI实战千例专栏合集人工智能深度学习音视频视频行为识别与分析
点击这里跳转到本专栏,可查阅专栏顶置最新的指南宝典~你的技术旅程将在这里启航!从基础到实践,深入学习。无论你是初学者还是经验丰富的老手,对于本专栏案例和项目实践都有参考学习意义。✨✨✨每一个案例都附带有在本地跑过的关键代码,详细讲解供大家学习,希望可以帮到大家。欢迎订阅支持,正在不断更新中~一.基于深度学习的视频行为识别与分析随着人工智能技术的迅猛发展,深度学习成为视频行为识别与分析领域的重要推动
- YOLO+SlowFast+DeepSORT 简单实现视频行为识别
北桥苏
YOLOpython人工智能
前言前段时间刷短视频看到过别人用摄像头自动化监控员工上班状态,比如标注员工是不是离开了工位,在位置上是不是摸鱼。虽然是段子,但是这个是可以用识别技术实现一下,于是我在网上找,知道发现了SlowFast,那么下面就用SlowFast简单测试一下视频的行为识别。工具简介YOLOYOLO是一个基于深度学习神经网络的对象识别和定位算法,前面我也用v5s训练了标注的扑克牌,实现了图片或视频中的点数识别,这里
- 基于轻量级神经网络GhostNet开发构建光伏太阳能电池缺陷图像识别分析系统
Together_CZ
神经网络人工智能深度学习
工作中经常会使用到轻量级的网络模型来进行开发,所以平时也会常常留意使用和记录,在前面的博文中有过很多相关的实践工作,感兴趣的话可以自行移步阅读即可。《移动端轻量级模型开发谁更胜一筹,efficientnet、mobilenetv2、mobilenetv3、ghostnet、mnasnet、shufflenetv2驾驶危险行为识别模型对比开发测试》《基于Pytorch框架的轻量级卷积神经网络垃圾分类
- 基于轻量级GhostNet模型开发构建工业生产制造场景下滚珠丝杠传动表面缺陷图像识别系统
Together_CZ
制造
轻量级识别模型在我们前面的博文中已经有过很多实践了,感兴趣的话可以自行移步阅读:《移动端轻量级模型开发谁更胜一筹,efficientnet、mobilenetv2、mobilenetv3、ghostnet、mnasnet、shufflenetv2驾驶危险行为识别模型对比开发测试》《基于Pytorch框架的轻量级卷积神经网络垃圾分类识别系统》《基于轻量级卷积神经网络模型实践Fruits360果蔬识别
- 基于轻量级GhostNet模型开发构建生活场景下生活垃圾图像识别系统
Together_CZ
制造
轻量级识别模型在我们前面的博文中已经有过很多实践了,感兴趣的话可以自行移步阅读:《移动端轻量级模型开发谁更胜一筹,efficientnet、mobilenetv2、mobilenetv3、ghostnet、mnasnet、shufflenetv2驾驶危险行为识别模型对比开发测试》《基于Pytorch框架的轻量级卷积神经网络垃圾分类识别系统》《基于轻量级卷积神经网络模型实践Fruits360果蔬识别
- 计算机视觉 全教程目录
机器学习杨卓越
计算机视觉人工智能
1、OpenCV图像处理框架实战系列总目录OpenCV图像处理框架实战系列总目录2、现代卷积网络实战系列总目录现代卷积网络实战系列总目录3、YOLO物体检测系列教程总目录YOLO物体检测系列教程总目录4、图像分割实战-系列教程总目录图像分割实战-系列教程总目录5、MMLAB计算机视觉框架实战-系列教程总目录MMLAB计算机视觉框架实战-系列教程总目录6、行为识别实战-系列教程总目录行为识别实战-系
- 初识智慧城市
Mr.Cssust
未来发展智慧城市人工智能
文章目录智慧家居智慧社区智慧交通智慧医疗智慧教育智慧旅游智慧农业智慧安防智慧家居利用智能语音、智能交互等技术,实现用户对家居系统各设备的远程操控和能控制如开关窗帘(窗户)、操控家用电器和照明系统、打扫卫生等操作。利用计算机视觉等技术,对被照看人员如老人、小孩、残障人土等进行行为识别,对危险行为进行预警。智慧社区利用智能识别技术对进出小区人员和车辆进行智能识别,包括身份验证、危险人员和车辆预警等:对
- 作业-对汽车行业偷税漏税的数据探索-spss
亲爱的十一熊猫
对汽车销售行业纳税人的各个属性指标进行分析,总结衡量纳税人的经营特征,建立偷漏税行为识别模型,识别偷漏税纳税人。数据来源于网络,该数据集提供了汽车销售行业纳税人的各个属性与是否判断为偷漏税标识,该数据不存在缺失值。原始数据的汽车销售平均毛利、维修毛利、企业维修收入占销售收入比重、增值税税负、存货周转率、成本费用利润率、整体理论税负、整体税负控制数、办牌率、单台办牌手续费收入、代办保险率、保费返还率
- 新型智慧视频监控系统:基于TSINGSEE青犀边缘计算AI视频识别技术的应用
TSINGSEE
AI智能解决方案人工智能边缘计算
边缘计算AI智能识别技术在视频监控领域的应用有很多。这项技术结合了边缘计算和人工智能技术,通过在摄像头或网关设备上运行AI算法,可以在现场实时处理和分析视频数据,从而实现智能识别和分析。目前来说,边缘计算AI视频智能技术可以实现以下几类智能识别。1、行为识别:利用边缘设备(TSINGSEE智能分析网关)搭载的深度学习算法,对监控画面中的人员行为进行识别和分析。比如,TSINGSEE智能分析网关内置
- 新型智慧视频监控系统:基于TSINGSEE青犀边缘计算AI视频识别技术的应用
Black蜡笔小新
解决方案EasyCVRAI识别人工智能边缘计算
边缘计算AI智能识别技术在视频监控领域的应用有很多。这项技术结合了边缘计算和人工智能技术,通过在摄像头或网关设备上运行AI算法,可以在现场实时处理和分析视频数据,从而实现智能识别和分析。目前来说,边缘计算AI视频智能技术可以实现以下几类智能识别。1、行为识别:利用边缘设备(TSINGSEE智能分析网关)搭载的深度学习算法,对监控画面中的人员行为进行识别和分析。比如,TSINGSEE智能分析网关内置
- 顶刊TPAMI 2022!基于不同数据模态的行为识别:最新综述
Amusi(CVer)
计算机视觉机器学习人工智能深度学习大数据
点击下方卡片,关注“CVer”公众号AI/CV重磅干货,第一时间送达点击进入—>CV微信技术交流群HumanActionRecognitionfromVariousDataModalities:AReview论文:https://arxiv.org/abs/2012.118661.介绍人类行为识别旨在了解人类的行为,并为行为指定标签,例如,握手、吃东西、跑步等。它具有广泛的应用前景,因此在计算机视
- 【行动识别】基于LSTM实现视频分类附matlab代码
机器学习之星主
lstmmatlab人工智能rnn深度学习
✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,matlab项目合作可私信。个人主页:Matlab科研工作室个人信条:格物致知。更多Matlab仿真内容点击智能优化算法神经网络预测雷达通信无线传感器电力系统信号处理图像处理路径规划元胞自动机无人机⛄内容介绍笔者对行为识别技术的发展过程进行研究的基础上,深入分析了基于LSTM的视频行为识别技术的特点和实现方法,并针对视频语义中对时间
- 基于BP神经网络的驾驶模式识别,基于BP神经网络的驾驶行为识别
神经网络机器学习智能算法画图绘图
BP神经网络神经网络人工智能深度学习
目录BP神经网络的原理BP神经网络的定义BP神经网络的基本结构BP神经网络的神经元BP神经网络的激活函数,BP神经网络的传递函数遗传算法原理遗传算法主要参数遗传算法流程图完整代码包含数据下载链接:基于BP神经网络的驾驶模式识别,基于BP神经网络的驾驶行为识别(代码完整,数据齐全)资源-CSDN文库https://download.csdn.net/download/abc991835105/885
- 基于轻量级模型GHoshNet开发构建眼球眼疾识别分析系统,构建全方位多层次参数对比分析实验
Together_CZ
深度学习
工作中经常会使用到轻量级的网络模型来进行开发,所以平时也会常常留意使用和记录,在前面的博文中有过很多相关的实践工作,感兴趣的话可以自行移步阅读即可。《移动端轻量级模型开发谁更胜一筹,efficientnet、mobilenetv2、mobilenetv3、ghostnet、mnasnet、shufflenetv2驾驶危险行为识别模型对比开发测试》《基于Pytorch框架的轻量级卷积神经网络垃圾分类
- 移动端轻量级模型开发谁更胜一筹,efficientnet、mobilenetv2、mobilenetv3、ghostnet、mnasnet、shufflenetv2驾驶危险行为识别模型对比开发测试
Together_CZ
人工智能
在实际的业务场景中,经常会需要考虑到硬件部署算力的因素,往往因为一些客观成本控制的问题,在实际项目开发中选择使用模型的时候往往会倾向于选择更为轻量级的模型来完成计算,但是也并非一味地轻量化,轻量化的同时还需要保证达到所需要的精度要求,本文选取了经常使用到的六款主流的识别模型,包括:efficientnet、mobilenetv2、mobilenetv3、ghostnet、mnasnet、shuff
- python基于轻量级卷积神经网络模型ShuffleNetv2开发构建辣椒病虫害图像识别系统
Together_CZ
pythoncnn开发语言
轻量级识别模型在我们前面的博文中已经有过很多实践了,感兴趣的话可以自行移步阅读:《移动端轻量级模型开发谁更胜一筹,efficientnet、mobilenetv2、mobilenetv3、ghostnet、mnasnet、shufflenetv2驾驶危险行为识别模型对比开发测试》《基于Pytorch框架的轻量级卷积神经网络垃圾分类识别系统》《基于轻量级卷积神经网络模型实践Fruits360果蔬识别
- 基于Intel® AI Analytics Toolkits的智能视频监控系统
YoLo♪
人工智能音视频
【oneAPIDevSummit&OpenVINODevCon联合黑客松】跳转链接:https://marketing.csdn.net/p/d2322260c8d99ae24795f727e70e4d3d目录1方案背景2方案描述3需求分析4技术可行性分析5详细设计5.1数据采集5.2视频解码与帧提取5.3人脸检测5.4行为识别5.5数据分析5.6结果展示6方案优点与适用场景6.1解决的问题6.2
- 行为识别标注工具 ELAN 使用教程
WAHAJA_1111
常用工具
行为识别标注工具ELAN使用教程文章目录行为识别标注工具ELAN使用教程前言安装+教程标注文件输出格式效果示意使用步骤前言调研行为识别标注工具,要求:标注整段视频片段中动作类型标签文件格式:动作标签时间始末视频标号安装+教程从ELAN官网下载安装包并安装。B站软件使用视频教程标注文件输出格式效果示意使用步骤
- 基于卷积神经网络的人体行为识别系统开发与设计
wqq_992250277
javajava
摘要基于卷积神经网络的人体行为识别的开发与设计摘要:随着计算机领域不断的创新、其它行业对计算机的应用需求的提高以及社会对解放劳动力的迫切,人机交互成为人们关注的问题。深度学习的出现帮助了人们实现人机交互,而卷积神经网络是其的代表算法的一种,被普遍应用在计算机视觉领域实现图片识别。人体行为识别是指将一系列数据喂入训练好的神经网络,计算机对数据进行特征提取然后识别分类,其中数据包括视频、图片序列或者传
- java Illegal overloaded getter method with ambiguous type for propert的解决
zwllxs
javajdk
好久不来iteye,今天又来看看,哈哈,今天碰到在编码时,反射中会抛出
Illegal overloaded getter method with ambiguous type for propert这么个东东,从字面意思看,是反射在获取getter时迷惑了,然后回想起java在boolean值在生成getter时,分别有is和getter,也许我们的反射对象中就有is开头的方法迷惑了jdk,
- IT人应当知道的10个行业小内幕
beijingjava
工作互联网
10. 虽然IT业的薪酬比其他很多行业要好,但有公司因此视你为其“佣人”。
尽管IT人士的薪水没有互联网泡沫之前要好,但和其他行业人士比较,IT人的薪资还算好点。在接下的几十年中,科技在商业和社会发展中所占分量会一直增加,所以我们完全有理由相信,IT专业人才的需求量也不会减少。
然而,正因为IT人士的薪水普遍较高,所以有些公司认为给了你这么多钱,就把你看成是公司的“佣人”,拥有你的支配
- java 实现自定义链表
CrazyMizzz
java数据结构
1.链表结构
链表是链式的结构
2.链表的组成
链表是由头节点,中间节点和尾节点组成
节点是由两个部分组成:
1.数据域
2.引用域
3.链表的实现
&nbs
- web项目发布到服务器后图片过一会儿消失
麦田的设计者
struts2上传图片永久保存
作为一名学习了android和j2ee的程序员,我们必须要意识到,客服端和服务器端的交互是很有必要的,比如你用eclipse写了一个web工程,并且发布到了服务器(tomcat)上,这时你在webapps目录下看到了你发布的web工程,你可以打开电脑的浏览器输入http://localhost:8080/工程/路径访问里面的资源。但是,有时你会突然的发现之前用struts2上传的图片
- CodeIgniter框架Cart类 name 不能设置中文的解决方法
IT独行者
CodeIgniterCart框架
今天试用了一下CodeIgniter的Cart类时遇到了个小问题,发现当name的值为中文时,就写入不了session。在这里特别提醒一下。 在CI手册里也有说明,如下:
$data = array(
'id' => 'sku_123ABC',
'qty' => 1,
'
- linux回收站
_wy_
linux回收站
今天一不小心在ubuntu下把一个文件移动到了回收站,我并不想删,手误了。我急忙到Nautilus下的回收站中准备恢复它,但是里面居然什么都没有。 后来我发现这是由于我删文件的地方不在HOME所在的分区,而是在另一个独立的Linux分区下,这是我专门用于开发的分区。而我删除的东东在分区根目录下的.Trash-1000/file目录下,相关的删除信息(删除时间和文件所在
- jquery回到页面顶端
知了ing
htmljquerycss
html代码:
<h1 id="anchor">页面标题</h1>
<div id="container">页面内容</div>
<p><a href="#anchor" class="topLink">回到顶端</a><
- B树、B-树、B+树、B*树
矮蛋蛋
B树
原文地址:
http://www.cnblogs.com/oldhorse/archive/2009/11/16/1604009.html
B树
即二叉搜索树:
1.所有非叶子结点至多拥有两个儿子(Left和Right);
&nb
- 数据库连接池
alafqq
数据库连接池
http://www.cnblogs.com/xdp-gacl/p/4002804.html
@Anthor:孤傲苍狼
数据库连接池
用MySQLv5版本的数据库驱动没有问题,使用MySQLv6和Oracle的数据库驱动时候报如下错误:
java.lang.ClassCastException: $Proxy0 cannot be cast to java.sql.Connec
- java泛型
百合不是茶
java泛型
泛型
在Java SE 1.5之前,没有泛型的情况的下,通过对类型Object的引用来实现参数的“任意化”,任意化的缺点就是要实行强制转换,这种强制转换可能会带来不安全的隐患
泛型的特点:消除强制转换 确保类型安全 向后兼容
简单泛型的定义:
泛型:就是在类中将其模糊化,在创建对象的时候再具体定义
class fan
- javascript闭包[两个小测试例子]
bijian1013
JavaScriptJavaScript
一.程序一
<script>
var name = "The Window";
var Object_a = {
name : "My Object",
getNameFunc : function(){
var that = this;
return function(){
- 探索JUnit4扩展:假设机制(Assumption)
bijian1013
javaAssumptionJUnit单元测试
一.假设机制(Assumption)概述 理想情况下,写测试用例的开发人员可以明确的知道所有导致他们所写的测试用例不通过的地方,但是有的时候,这些导致测试用例不通过的地方并不是很容易的被发现,可能隐藏得很深,从而导致开发人员在写测试用例时很难预测到这些因素,而且往往这些因素并不是开发人员当初设计测试用例时真正目的,
- 【Gson四】范型POJO的反序列化
bit1129
POJO
在下面这个例子中,POJO(Data类)是一个范型类,在Tests中,指定范型类为PieceData,POJO初始化完成后,通过
String str = new Gson().toJson(data);
得到范型化的POJO序列化得到的JSON串,然后将这个JSON串反序列化为POJO
import com.google.gson.Gson;
import java.
- 【Spark八十五】Spark Streaming分析结果落地到MySQL
bit1129
Stream
几点总结:
1. DStream.foreachRDD是一个Output Operation,类似于RDD的action,会触发Job的提交。DStream.foreachRDD是数据落地很常用的方法
2. 获取MySQL Connection的操作应该放在foreachRDD的参数(是一个RDD[T]=>Unit的函数类型),这样,当foreachRDD方法在每个Worker上执行时,
- NGINX + LUA实现复杂的控制
ronin47
nginx lua
安装lua_nginx_module 模块
lua_nginx_module 可以一步步的安装,也可以直接用淘宝的OpenResty
Centos和debian的安装就简单了。。
这里说下freebsd的安装:
fetch http://www.lua.org/ftp/lua-5.1.4.tar.gz
tar zxvf lua-5.1.4.tar.gz
cd lua-5.1.4
ma
- java-递归判断数组是否升序
bylijinnan
java
public class IsAccendListRecursive {
/*递归判断数组是否升序
* if a Integer array is ascending,return true
* use recursion
*/
public static void main(String[] args){
IsAccendListRecursiv
- Netty源码学习-DefaultChannelPipeline2
bylijinnan
javanetty
Netty3的API
http://docs.jboss.org/netty/3.2/api/org/jboss/netty/channel/ChannelPipeline.html
里面提到ChannelPipeline的一个“pitfall”:
如果ChannelPipeline只有一个handler(假设为handlerA)且希望用另一handler(假设为handlerB)
来
- Java工具之JPS
chinrui
java
JPS使用
熟悉Linux的朋友们都知道,Linux下有一个常用的命令叫做ps(Process Status),是用来查看Linux环境下进程信息的。同样的,在Java Virtual Machine里面也提供了类似的工具供广大Java开发人员使用,它就是jps(Java Process Status),它可以用来
- window.print分页打印
ctrain
window
function init() {
var tt = document.getElementById("tt");
var childNodes = tt.childNodes[0].childNodes;
var level = 0;
for (var i = 0; i < childNodes.length; i++) {
- 安装hadoop时 执行jps命令Error occurred during initialization of VM
daizj
jdkhadoopjps
在安装hadoop时,执行JPS出现下面错误
[slave16]
[email protected]:/tmp/hsperfdata_hdfs# jps
Error occurred during initialization of VM
java.lang.Error: Properties init: Could not determine current working
- PHP开发大型项目的一点经验
dcj3sjt126com
PHP重构
一、变量 最好是把所有的变量存储在一个数组中,这样在程序的开发中可以带来很多的方便,特别是当程序很大的时候。变量的命名就当适合自己的习惯,不管是用拼音还是英语,至少应当有一定的意义,以便适合记忆。变量的命名尽量规范化,不要与PHP中的关键字相冲突。 二、函数 PHP自带了很多函数,这给我们程序的编写带来了很多的方便。当然,在大型程序中我们往往自己要定义许多个函数,几十
- android笔记之--向网络发送GET/POST请求参数
dcj3sjt126com
android
使用GET方法发送请求
private static boolean sendGETRequest (String path,
Map<String, String> params) throws Exception{
//发送地http://192.168.100.91:8080/videoServi
- linux复习笔记 之bash shell (3) 通配符
eksliang
linux 通配符linux通配符
转载请出自出处:
http://eksliang.iteye.com/blog/2104387
在bash的操作环境中有一个非常有用的功能,那就是通配符。
下面列出一些常用的通配符,如下表所示 符号 意义 * 万用字符,代表0个到无穷个任意字符 ? 万用字符,代表一定有一个任意字符 [] 代表一定有一个在中括号内的字符。例如:[abcd]代表一定有一个字符,可能是a、b、c
- Android关于短信加密
gqdy365
android
关于Android短信加密功能,我初步了解的如下(只在Android应用层试验):
1、因为Android有短信收发接口,可以调用接口完成短信收发;
发送过程:APP(基于短信应用修改)接受用户输入号码、内容——>APP对短信内容加密——>调用短信发送方法Sm
- asp.net在网站根目录下创建文件夹
hvt
.netC#hovertreeasp.netWeb Forms
假设要在asp.net网站的根目录下建立文件夹hovertree,C#代码如下:
string m_keleyiFolderName = Server.MapPath("/hovertree");
if (Directory.Exists(m_keleyiFolderName))
{
//文件夹已经存在
return;
}
else
{
try
{
D
- 一个合格的程序员应该读过哪些书
justjavac
程序员书籍
编者按:2008年8月4日,StackOverflow 网友 Bert F 发帖提问:哪本最具影响力的书,是每个程序员都应该读的?
“如果能时光倒流,回到过去,作为一个开发人员,你可以告诉自己在职业生涯初期应该读一本, 你会选择哪本书呢?我希望这个书单列表内容丰富,可以涵盖很多东西。”
很多程序员响应,他们在推荐时也写下自己的评语。 以前就有国内网友介绍这个程序员书单,不过都是推荐数
- 单实例实践
跑龙套_az
单例
1、内部类
public class Singleton {
private static class SingletonHolder {
public static Singleton singleton = new Singleton();
}
public Singleton getRes
- PO VO BEAN 理解
q137681467
VODTOpo
PO:
全称是 persistant object持久对象 最形象的理解就是一个PO就是数据库中的一条记录。 好处是可以把一条记录作为一个对象处理,可以方便的转为其它对象。
BO:
全称是 business object:业务对象 主要作用是把业务逻辑封装为一个对象。这个对
- 战胜惰性,暗自努力
金笛子
努力
偶然看到一句很贴近生活的话:“别人都在你看不到的地方暗自努力,在你看得到的地方,他们也和你一样显得吊儿郎当,和你一样会抱怨,而只有你自己相信这些都是真的,最后也只有你一人继续不思进取。”很多句子总在不经意中就会戳中一部分人的软肋,我想我们每个人的周围总是有那么些表现得“吊儿郎当”的存在,是否你就真的相信他们如此不思进取,而开始放松了对自己的要求随波逐流呢?
我有个朋友是搞技术的,平时嘻嘻哈哈,以
- NDK/JNI二维数组多维数组传递
wenzongliang
二维数组jniNDK
多维数组和对象数组一样处理,例如二维数组里的每个元素还是一个数组 用jArray表示,直到数组变为一维的,且里面元素为基本类型,去获得一维数组指针。给大家提供个例子。已经测试通过。
Java_cn_wzl_FiveChessView_checkWin( JNIEnv* env,jobject thiz,jobjectArray qizidata)
{
jint i,j;
int s