SiamFC代码讲解,训练过程讲解

siamfc论文:Fully-Convolutional Siamese Networks for Object Tracking

gitHub代码:https://github.com/huanglianghua/siamfc-pytorch

论文模型架构:
SiamFC代码讲解,训练过程讲解_第1张图片
上一篇文章:SiamFC代码讲解,推理测试讲解
此篇是: 训练过程代码讲解

###训练大致流程:

|—train.py
|——GOT10K类
|——TranckerSiamFC类
|——train_over函数
|———预处理(transformer)
|———自定义dataset(Pair)
|———构造dataloader
|———loss=train_step
|————获取z,x图像;通过siamfc获得响应图response
|————获取label并与response计算loss;反向传播
|———输出loss结果
|———模型结果保存
(需要有个映像,siamfc中不会用到groundtruth来计算loss,而是固定生成label,与response进行loss计算。因为每次裁剪的图片,物体就在图片中间)

代码流程

train.py:
看到GOT10K类(train.py–Line11)
crtl+左键点进去,进入到got10k.py中

##### GOT10K类

代码详解(注释)
过程简述:

  1. 继承Object类
  2. 保存训练要用的img和annotation的路径

返回train.py
看到trackerSiamFC类(train.py --Line13)
crtl+左键点进去,进入到siamfc.py中
(PS:这里和推理过程是一样的)

TrackerSiamFC类中init函数:

代码详解(注释)
过程简述:

  1. 超参初始化
  2. 创建siamfc架构;
  3. 模型加载;
  4. 定义损失函数;
  5. SGD优化器;
  6. 获得指数衰减学习率因子函数:ExponentialLR

返回train.py
看到train_over函数
进入到siamfc.py中

siamfc.py下train_over函数:

代码详解(注释)
过程简述:

|—1. 预处理(transformer)
|—2. 自定义dataset类(Pair)
|—3. 创建dataloader
|—4. 遍历epoch
|——4.1 lr变化
|——4.2 遍历batch
|———4.2.1 loss=训练(图像)
|———4.2.2 输出训练时信息
|——4.3 保存模型

以下是最主要代码

loss = self.train_step(batch, backward=True)

进入train_step函数中

siamfc.py下train_step函数:

代码详解(注释)
过程简述:

  1. 获取z,x图像
  2. 获得响应图response
  3. 获取label并与response计算loss
  4. 反向传播
  5. 返回loss

————————————————————————————————————

代码解析

GOT10K类
class GOT10k(object):
    def __init__(self, root_dir, subset='test', return_meta=False):
        super(GOT10k, self).__init__()
        assert subset in ['train', 'val', 'test'], 'Unknown subset.'

        self.root_dir = root_dir
        self.subset = subset
        self.return_meta = False if subset == 'test' else return_meta
        self._check_integrity(root_dir, subset)

        list_file = os.path.join(root_dir, subset, 'list.txt')
        with open(list_file, 'r') as f:
            self.seq_names = f.read().strip().split('\n')

        self.seq_dirs = [os.path.join(root_dir, subset, s)
                         for s in self.seq_names]
        ## e.g. root_dir / train / GOT-10k_train_000001

        self.anno_files = [os.path.join(d, 'groundtruth.txt')
                           for d in self.seq_dirs]
        ## e.g. root_dir / train / GOT-10k_train_000001/groundtruth.txt
TrackerSiamFC类init函数

与推理,测试的对应代码一致

siamfc.py下train_over函数

额外补充:
图像预处理(transformer)
自定义dataset(Pair)

    def train_over(self, seqs, val_seqs=None,
                   save_dir='pretrained'):
        # set to train mode
        self.net.train()

        # create save_dir folder
        if not os.path.exists(save_dir):
            os.makedirs(save_dir)

        # setup dataset
        transforms = SiamFCTransforms(          ##预处理
            exemplar_sz=self.cfg.exemplar_sz,       ##127
            instance_sz=self.cfg.instance_sz,       ##255
            context=self.cfg.context)
        dataset = Pair(                        ##数据集,,Pair类继承dataset类
            seqs=seqs,
            transforms=transforms)

        ##SiamFC的输入是pair ,其中 frame_i,frame_j来自同一视频的两帧,间隔不超过T帧,大小: W,H,3
        
        # setup dataloader
        dataloader = DataLoader(                ##数据集
            dataset,
            batch_size=self.cfg.batch_size,
            shuffle=True,
            num_workers=self.cfg.num_workers,
            pin_memory=self.cuda,
            drop_last=True)
        
        # loop over epochs
        for epoch in range(self.cfg.epoch_num):
            # update lr at each epoch
            self.lr_scheduler.step(epoch=epoch) ##每一个批次进行lr递减
            ##BalancedLoss()损失函数,具体递减公式为 lr= lr*gamma**epoch

            # loop over dataloader
            for it, batch in enumerate(dataloader):	
            ##batch 即 datasets.py中Pair类下get_item函数的返回值
            ##batch[0] 为预处理后的z图片
            ##batch[1] 为预处理后的x图片
                loss = self.train_step(batch, backward=True) ##关键代码
                print('Epoch: {} [{}/{}] Loss: {:.5f}'.format(
                    epoch + 1, it + 1, len(dataloader), loss))
                sys.stdout.flush()
            
            # save checkpoint
            if not os.path.exists(save_dir):
                os.makedirs(save_dir)
            net_path = os.path.join(
                save_dir, 'siamfc_alexnet_e%d.pth' % (epoch + 1))
            torch.save(self.net.state_dict(), net_path)
    
siamfc.py下train_step函数
额外补充:

创建标签(create_labels)
loss的详细计算(BalancedLoss类)

    def train_step(self, batch, backward=True):
        # set network mode
        self.net.train(backward)

        ##SiamFC的输入是pair ,其中 frame_i,frame_j来自同一视频的两帧,间隔不超过T帧,大小: W,H,3

        # parse batch data
        z = batch[0].to(self.device, non_blocking=self.cuda)
        ##Z.shape (B,C,127,127)
        x = batch[1].to(self.device, non_blocking=self.cuda)
		##X.shape (B,C,239,239)
        with torch.set_grad_enabled(backward):
            # inference
            responses = self.net(z, x)  ##响应图
            """
            response.shape==(B,1,15,15),注意这里与论文中有点出入
            原因是::论文中,z.shape==B,C,127,127 得到的feature_z==B,128,6,6
            x.shape==B,C,255,255 最后得到的feature_x.shape==B,128,22,22
            而训练时的预处理后,x.shape==B,C,239,239 ,最后得到的feature_x.shape==B,128,20,20
            因此在代码中,得到response.shape==(B,1,15,15)
            """

            # calculate loss
            labels = self._create_labels(responses.size())
            loss = self.criterion(responses, labels) ##BalancedLoss类 在siamfc.py的初始化中提到
            
            if backward:
                # back propagation
                self.optimizer.zero_grad()
                loss.backward()
                self.optimizer.step()
        
        return loss.item()

————————————————————————————————————

额外补充:

transformer.py下SiamFCTransformer类
class SiamFCTransforms(object):

    def __init__(self, exemplar_sz=127, instance_sz=255, context=0.5):
        self.exemplar_sz = exemplar_sz
        self.instance_sz = instance_sz
        self.context = context

        self.transforms_z = Compose([
            RandomStretch(),
            CenterCrop(instance_sz - 8),
            RandomCrop(instance_sz - 2 * 8),
            CenterCrop(exemplar_sz),###127
            ToTensor()])
         ##目标图 会进行:随机拉伸;中心裁剪;随即裁剪;中心裁剪
         ##最后的shape应该是 B,C, 127,127
        self.transforms_x = Compose([
            RandomStretch(),
            CenterCrop(instance_sz - 8),
            RandomCrop(instance_sz - 2 * 8),  ###255-2*8==239
            ToTensor()])
         ##搜索图会进行:随机拉伸;中心裁剪;随即裁剪;
         ##最后的shape应该是 B,C,239,239
    
    def __call__(self, z, x, box_z, box_x):
		## e.g. box_x = anno[rand_x] 为groundtruth的框大小
        z = self._crop(z, box_z, self.instance_sz)##统一resize到255大小
        x = self._crop(x, box_x, self.instance_sz)

		##进行transformer
        z = self.transforms_z(z)
        x = self.transforms_x(x)
        return z, x
datasets.py下Pair类
class Pair(Dataset):
    def __getitem__(self, index): ##会在dataloader中调用这个函数
        index = self.indices[index % len(self.indices)]
        ##随机的打乱图片的索引顺序

        # get filename lists and annotations
        if self.return_meta:
            img_files, anno, meta = self.seqs[index]
            vis_ratios = meta.get('cover', None)
        else:
            img_files, anno = self.seqs[index][:2]
            vis_ratios = None
        
        # filter out noisy frames
        val_indices = self._filter(
            cv2.imread(img_files[0], cv2.IMREAD_COLOR),
            anno, vis_ratios)
        if len(val_indices) < 2:
            index = np.random.choice(len(self))
            return self.__getitem__(index)

        # sample a frame pair
        rand_z, rand_x = self._sample_pair(val_indices)
        ##随机z下标和x下标

        z = cv2.imread(img_files[rand_z], cv2.IMREAD_COLOR)
        x = cv2.imread(img_files[rand_x], cv2.IMREAD_COLOR)
        z = cv2.cvtColor(z, cv2.COLOR_BGR2RGB)
        x = cv2.cvtColor(x, cv2.COLOR_BGR2RGB)
        
        box_z = anno[rand_z]
        box_x = anno[rand_x]

        item = (z, x, box_z, box_x)
        if self.transforms is not None:
            item = self.transforms(*item)
            ##对应transformer.py下SiamFCTransformer类的call函数
        	##len(item) ==2  item[0]为预处理后的z图像,shape==B,C,127,127
        return item
siamfc.py下train_step中create_labels函数
额外补充:

meshgrid函数

    def _create_labels(self, size):
        # skip if same sized labels already created
        if hasattr(self, 'labels') and self.labels.size() == size:
            return self.labels

        def logistic_labels(x, y, r_pos, r_neg):
            dist = np.abs(x) + np.abs(y)  # block distance
            labels = np.where(dist <= r_pos,        ##不等式1
                              np.ones_like(x),      ##如果满足不等式1则是这个值
                              np.where(dist < r_neg, ##如果不满足等式 1 则是这个值 ;; 嵌套进行不等式2
                                       np.ones_like(x) * 0.5,    ####如果满足不等式2则是这个值
                                       np.zeros_like(x)))    ##如果不满足等式 2 则是这个值
            ## 即:距离<=r_pos(=2) 则是1 , 否则则是 0
            return labels

        # distances along x- and y-axis
        n, c, h, w = size   ##batch ,1, 15, 15
        x = np.arange(w) - (w - 1) / 2 ## -w/2 ,-w/2+1 ...0, 1,2,  ...w/2
        y = np.arange(h) - (h - 1) / 2 ## -h/2 ,-h/2+1 ...0, 1,2,  ...h/2
        x, y = np.meshgrid(x, y)

        # create logistic labels
        r_pos = self.cfg.r_pos / self.cfg.total_stride 
         ## sekf.cfg.r_pos ==16;;self.cfg.total_stride=8  --->r_pos=16/8==2
        r_neg = self.cfg.r_neg / self.cfg.total_stride  
        ## sekf.cfg.r_neg ==0 --->r_neg=0/8==0
        labels = logistic_labels(x, y, r_pos, r_neg)
        ##Labels: 中心区域的 像素为1 ,其余为0 ;; 因为在裁剪的时候会尽量让物体在中心区域

        # repeat to size
        labels = labels.reshape((1, 1, h, w))
        labels = np.tile(labels, (n, c, 1, 1))  ##以复制方式,堆叠
        ##label.shape:  1,1,15,15--->8,1,15,15  堆叠,便于运算

        # convert to tensors
        self.labels = torch.from_numpy(labels).to(self.device).float()
        
        return self.labels

其中,label结果应该是

[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
 [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
 [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
 [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
 [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
 [0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0.]
 [0. 0. 0. 0. 0. 0. 1. 1. 1. 0. 0. 0. 0. 0. 0.]
 [0. 0. 0. 0. 0. 1. 1. 1. 1. 1. 0. 0. 0. 0. 0.]
 [0. 0. 0. 0. 0. 0. 1. 1. 1. 0. 0. 0. 0. 0. 0.]
 [0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0.]
 [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
 [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
 [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
 [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
 [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]]
meshgrid函数
import numpy as np
x= np.array([1,2,3,4,5,6])
y= np.array([-7,-8,-9])
x,y=np.meshgrid(x,y)
print(x)
print(y)
>>>
x: [[1 2 3 4 5 6]
 [1 2 3 4 5 6]
 [1 2 3 4 5 6]]
y:[[-7 -7 -7 -7 -7 -7]
 [-8 -8 -8 -8 -8 -8]
 [-9 -9 -9 -9 -9 -9]]

欢迎指正

因为本文主要是本人用来做的笔记,顺便进行知识巩固。如果本文对你有所帮助,那么本博客的目的就已经超额完成了。
本人英语水平、阅读论文能力、读写代码能力较为有限。有错误,恳请大佬指正,感谢。

欢迎交流
邮箱:[email protected]

你可能感兴趣的:(目标跟踪,论文阅读,深度学习,机器学习,人工智能,pytorch,目标跟踪)