- OpenMVG(EXIF、畸变、仿射特征、特征匹配)
江河地笑
C++(图形图像)算法
本人之前也研究过OpenMVS但是对于OpenMVG只是原理层次的了解,因此乘着过年期间对这个库进行详细的学习。目录1OpenMVG编译与简单测试1.1sfm_data.json获取1.2计算特征2OpenMVG整个流程的运行测试3OpenMVG实战3.1SVG绘制3.2解析图片的EXIF信息3.3光学畸变3.4提取图像中的仿射特征点3.5对图像进行特征匹配(K-VLD)1OpenMVG编译与简单
- 计算机视觉中的Homography单应矩阵应用小结
CS_Zero
SLAM计算机视觉CV计算机视觉slam几何学
计算机视觉中的Homography(单应)矩阵应用小结Homography矩阵在StructurefromMotion(SfM)或三维重建、视觉SLAM的初始化过程有着重要应用,本文总结了单应矩阵出现场景与常见问题求解。文章目录计算机视觉中的Homography(单应)矩阵应用小结单应矩阵的推导单应矩阵的求解与分解位姿问题单应矩阵的推导一般地,单应模型出现的前提条件是空间点分布在同一个平面上,例外
- 《PackNet:3D Packing for Self-Supervised Monocular Depth Estimation》论文笔记
m_buddy
#DepthEstimationPackNet
参考代码:packnet-sfm1.概述导读:这篇文章提出了一种自监督的深度估计方法,其使用视频序列与运动信息作为输入,用网络去估计深度信息/相机位姿,并用最小重构误差去约束整个训练的过程从而实现自监督。文章的创新点主要体现为:使用3D卷机作为深度编解码网络,在相机位姿的6d信息基础上对平移分量进行约束,提出了一个新的数据集DDAD(DenseDepthforAutomatedDriving)。单
- 3D Gaussian Splatting-实时辐射场渲染技术
VT LI
gpu并行编程3d高斯飞溅图形渲染论文ai
引用自:https://repo-sam.inria.fr/fungraph/3d-gaussian-splatting/3d_gaussian_splatting_high.pdf概述:该论文介绍了一种用于实时辐射场渲染的3D高斯点渲染技术。其基本原理是:一:首先从SfM校准的图像及其对应的稀疏点云中提取出场景信息。解析:1.SfM校准的图像是指通过StructurefromMotion(SfM
- 基于Pix4Dmapper软件的运动结构恢复SFM无人机遥感影像三维模型重建
疯狂学习GIS
前面两篇博客分别基于不同软件、不同方法,详细讲解了空间三维模型建立的过程: 博客1(https://www.jianshu.com/p/20dede2650a9):基于3DSOM的侧影轮廓方法物体空间三维模型重建。 博客2(https://www.jianshu.com/p/fa2bf99624aa):基于EinScan-S的编码结构光方法物体空间三维模型重建。 那么本次,综合以上两篇博
- 三维重建经典论文合集汇总
深蓝学院
人工智能三维重建视觉
三维重建涉及计算机视觉、图形学等多门知识,是一套非常复杂的系统。经典三维重建系统包括整个pipeline从相机标定、基础矩阵与本质矩阵估计、特征匹配到运动恢复结构(SFM),从SFM到稠密点云重建、表面重建、纹理贴图。其中,熟悉SFM的工程师已经是行业内的佼佼者,能掌握稠密点云重建与表面重建的工程师更是凤毛麟角。图1经典三维重建系统pipeline三维重建是当下计算机视觉的一个研究热点,虽然从业者
- 【三维重建】运动恢复结构(SfM)
Patrick star`
算法
运动恢复结构是通过三维场景的多张图像,恢复出该场景的三维结构信息以及每张图片对应的摄像机参数。欧式结构恢复(内参已知,外参未知)欧式结构恢复问题:已知:1、n个三维点在m张图像中的对应点的像素坐标2、相机内参求解:1、n个三维点坐标2、m个摄像机的外参数R、T通过极几何我们知道本质矩阵和基础矩阵【三维重建】对极几何-CSDN博客求得了基础矩阵F,知道相机内参,就能求得本质矩阵E核心问题就在于如何从
- 3d gaussian splatting介绍整理
蓝羽飞鸟
DeepLearning3d人工智能
3D高斯分布是用于实时辐射场渲染的3D高斯分布中描述的一种光栅化技术,它允许实时渲染从小图像样本中学习到的逼真场景。papergithub本文翻译整理自:blog:Introductionto3DGaussianSplattingDDPMs-Part2给出一些2D图片,用colmap得到稀疏(SfM)点,可重建出逼真的3D场景。3DGS的核心是光栅化技术。这类似于计算机图形学中的三角形光栅化,用于
- 三维重建(6)--多视图几何
Struart_R
三维重建人工智能三维重建计算机视觉
目录一、运动恢复问题(SfM)二、欧式结构恢复问题1、概述2、算法流程3、本质矩阵分解4、欧式结构恢复歧义三、仿射结构恢复问题1、概述2、因式分解法3、仿射结构恢复歧义四、透视结构恢复问题1、概述2、透视结构恢复歧义3、代数方法4、捆绑调整五、P3P问题六、随机采样一致性(RANSAC)一、运动恢复问题(SfM)运动恢复问题:通过三维场景的多张图像,恢复出该场景的三维结构信息以及每张图片对应的摄像
- 【三维重建】运动恢复结构SfM理解记录:初始化与参数估计
小白不懂就多问多学
三维重建
目录一、SfM的认识二、SfM的初始化三、SfM的实现1、投影变换矩阵2、投影过程3、参数初始估计4、最小化重投影误差注意参考文献一、SfM的认识三维重建=图像序列+SfM+MVS+…图像序列:拍摄多视图照片集SfM:能求出每个图像的参数(包括内参和外参),还有稀疏三维结构MVS:是基于SfM的输出下,进行稠密化。还有后续的曲面重建等等。三维重建:综述链接1,链接2;项目链接开源的sfm可以参考c
- 三维重建(7)--运动恢复结构SfM系统解析
Struart_R
三维重建人工智能计算机视觉三维重建三维建模
目录一、SfM系统(两视图)1、特征提取2、特征匹配3、RANSAC求解基础矩阵F4、完整的欧式结构恢复算法流程二、基于增量法的SfM系统(以OpenMVG为例)1、预处理2、图像特征点提取与匹配3、两视图重构点云4、增加新视图,多视图重构一、SfM系统(两视图)对于欧式结构恢复的两视图问题,需要获得三维场景的m张图像的像坐标作为已知条件,求解三维场景结构(即三维点坐标),m个摄像机的外参数R和T
- 最新!无需任何SFM预处理,实现精确相机姿态估计和逼真场景重建
3DCV
人工智能计算机视觉算法学习深度学习
作者:石昊|来源:3DCV在公众号「3DCV」后台,回复「原论文」可获取论文pdf从图像序列中进行相机姿态估计和新视角合成的问题。以往的方法在处理大相机运动时存在困难,或者需要非常长的训练时间。为了解决这个问题,本文提出了一种新的端到端框架,利用三维高斯点云表示场景,并结合视频流中的连续性进行相机姿态估计和新视角合成。与NeRF等方法不同,本文的方法利用显式的点云表示场景,通过利用三维高斯点云的能
- OpenSfM
我愿化作一道辰光
简介OpenSfM是Mapillary公司在github上的开源项目,是封装很好的开源SfM项目之一,同时生成的结果可以快速实现可视化效果。具有较好的可拓展性。配置见github。源码剖析源码结构--bin[写好的脚本]--data[数据]--doc[说明书]--opensfm[源代码]--viewer[可视化]参考Mapillary官网paulinus作者
- 【计算机视觉】基于三维重建和点云处理的扫地机器人寻路
乐心唯帅
计算机视觉人工智能
[摘要]扫地机器人的使用已经越发普及,其中应用到了三维重建的知识。本项目旨在设计由一定数量的图像根据算法完成三维模型的建立,并利用三维数据最终得到扫地机器人的行驶路线,完成打扫机器人成功寻路的任务。本项目采用的方法是SFM-MVS、Colmap、Kinect三种建模方法进行建模,分别由组内不同成员完成,经过亲自采集一定数量的图像集,利用SFM-MVS算法获得对应的三维模型进行2D降维处理,并利用该
- 3D Guassians Splatting相关解读
我宿孤栈
#视觉相关人工智能3d算法
从已有的点云模型出发,以每个点为中心,建立可学习的高斯表达,用Splatting即抛雪球的方法进行渲染,实现高分辨率的实时渲染。1、主要思想1.引入了一种各向异性(anisotropic)的3D高斯分布作为高质量、非结构化的辐射场表达;从SFM点云出发,以每个点为中心生成3D高斯分布;各向异性指从各个方向看上去都长得不一样,即把一个点往不同相机位姿上投影的时候会投出不一样的样子。2.实现了使用GP
- 【研究】聚焦型光场相机等效多相机模型及其运动恢复结构应用
光场视觉
数码相机3d光场
摘要:聚焦型光场相机在运动恢复结构(SFM)和场景重建等领域中的作用日益显现。但是传统SFM算法因聚焦型光场相机具有特殊的结构而难以直接应用。针对这一问题提出一种完整的聚焦型光场相机等效多目相机模型。在此基础上,利用传统多目相机的SFM算法,给出了适用于聚焦型光场相机的位姿估计算法示例和点云三角化算法示例。最后,通过仿真实验和真实场景重建实验验证了本文等效多目相机模型和SFM算法的正确性,进而表明
- ParticleSfM:Exploiting Dense Point Trajectories for Localizing Moving Cameras in the Wild——论文笔记
m_buddy
#3DReconstruction论文阅读计算机视觉人工智能
参考代码:particle-sfm1.概述介绍:基于运动恢复的重建算法其前提假设是所处的是静态场景,但在实际过程中该假设可能是不成立的,这就会导致位姿估计不准确和场景重建出错。为了处理动态场景问题,文章引入视频帧间光流信息作为输入,通过帧间光流信息构建多帧之间初始逐像素传导路径,并由这些路径通过网络推理得到场景中众多路径是否为属于运动物体,同时可以根据路径分类信息得到场景中运动目标的“分割mask
- Ubuntu18.04安装GTSAM库(亲测可用)
RobotsRuning
UbuntuGTSAM
在SLAM(SimultaneousLocalizationandMapping)和SFM(StructurefromMotion)这些复杂的估计问题中,因子图算法以其高效和灵活性而脱颖而出,成为图模型领域的核心技术。GTSAM(GeorgiaTechSmoothingandMapping)库,作为因子图算法的一个杰出代表,由佐治亚理工学院的团队开发,是机器人学和计算机视觉领域里数据平滑和地图构建
- 算法学习-BM1:链表反转
xyx112
c++链表算法
算法学习BM1链表反转https://www.nowcoder.com/practice/75e878df47f24fdc9dc3e400ec6058ca?tpId=295&sfm=html&channel=nowcoder题目描述:给定一个长度为n的链表,反转该链表,输出表头。思路:1.空链表直接返回;2.两个指针,cur当前结点,pre前一个节点(初始为空);3.遍历链表,每到一个节点,断开节
- Ubuntu下COLMAP的编译与安装全攻略
梦想的理由
编译ubuntuubuntulinux运维
文章目录一、前言二、安装依赖库基本的依赖安装CeresSolver安装不需要cuda支持需要cuda支持三、编译colmap四、运行colmap五、总结一、前言在计算机视觉领域,colmap是一款功能强大的开源图像重建工具。它提供了包括SfM(StructurefromMotion)、MVS(Multi-ViewStereo)等在内的多种功能,广泛应用于三维建模、场景理解等领域。对于从事相关研究的
- 3D重建算法综述
小白学视觉
算法神经网络python计算机视觉机器学习
点击上方“小白学视觉”,选择加"星标"或“置顶”重磅干货,第一时间送达三维重建算法广泛应用于手机等移动设备中,常见的算法有SfM,REMODE和SVO等。2.2双目/多目视觉双目视觉主要利用左右相机得到的两幅校正图像找到左右图片的匹配点,然后根据几何原理恢复出环境的三维信息。但该方法难点在于左右相机图片的匹配,匹配地不精确都会影响最后算法成像的效果。多目视觉采用三个或三个以上摄像机来提高匹配的精度
- 目标检测YOLO系列从入门到精通技术详解100篇-【目标检测】三维重建
格图素书
目标检测人工智能计算机视觉
目录前言几个高频面试题目“基于RGB-D相机的三维重建"和传统的SFM和SLAM算法有什么区别?
- 基于单片机音乐弹奏播放DS1302万年历显示及源程序
bbxyliyang
51单片机嵌入式硬件单片机
一、系统方案1、本设计采用51单片机作为主控器。2、DS1302计时显示年月日时分秒。3、按键可以弹奏以及播放音乐,内置16首音乐。二、硬件设计原理图如下:三、单片机软件设计1、首先是系统初始化/时钟显示**/voidinit_1602_ds1302(){write_sfm2_ds1302(1,1,shi);//显示时write_sfm2_ds1302(1,4,fen);//显示分write_sf
- 一起自学SLAM算法:7.6 SFM、BA和SLAM比较
机器人研究猿
一起自学SLAM算法算法人工智能机器人
连载文章,长期更新,欢迎关注:写在前面第1章-ROS入门必备知识第2章-C++编程范式第3章-OpenCV图像处理第4章-机器人传感器第5章-机器人主机第6章-机器人底盘第7章-SLAM中的数学基础
- VINS-Mono-VIO初始化 (二:SFM中的三角化方法)
Rhys___
VINS系列专栏算法线性代数矩阵自动驾驶c++
前面预积分对IMU的数据进行预处理,现在需要对视觉的信息进行处理,在VINS中视觉初始化的处理就是使用SFM,但是这里的三角化他没有用opencv给的函数,而是用自己的方法进行三角化。这里SFM的方式就是现在滑窗里面找到枢纽帧,然后枢纽帧和最后一帧进行三角化获得3D点,然后通过PNP计算滑窗中其他关键帧的位姿,同时也三角化出更多新的点,顺序是先从枢纽帧向右再向左,然后再遍历只被中间帧看到的点进行三
- OpenCV实现SfM(三):多目三维重建
看不见我呀
立体标定基础
http://blog.csdn.net/AIchipmunk/article/details/51232861版权声明:本文为博主原创文章,未经博主允许不得转载。目录(?)[+]注意:本文中的代码必须使用OpenCV3.0或以上版本进行编译,因为很多函数是3.0以后才加入的。目录:问题简化求第三个相机的变换矩阵加入更多图像代码实现测试思考下载问题简化终于有时间来填坑了,这次一口气将双目重建扩展为
- hive自定义UDF实现md5加密函数
青眼酷白龙
Hivehive
hive自定义UDF实现md5加密函数1pom.xm配置4.0.0com.itcastUDFtest1.0-SNAPSHOTorg.apache.hivehive-exec1.2.1org.apache.hadoophadoop-common2.7.4org.apache.maven.pluginsmaven-shade-plugin2.2packageshade*:*META-INF/*.SFM
- 三维重建代码实现(二)
风之旅人c
写在开头最近在学习三维重建的相关知识,打算将三维重建SFM的整个过程用代码的形式梳理一下,本章节主要实现相机标定。这里我们假定你有一定的三维重建相关的基本知识,作者在这里推荐高翔博士的《视觉SLAM十四讲:从理论到实践》,在B站上有高翔博士的讲解视频。相机标定我们首先做一个约定:二维坐标点:,三维点坐标。则他们的坐标对应的齐次形式是:,三维点坐标。两者之间的关系是:其中是一个比例参数,是相机外参,
- A 3D Morphable Model learnt from 10,000 faces
深蓝蓝蓝蓝蓝
三套人脸数据模型:BFM,Facewarehouse,SFM,LSFM本文提到的是LSFM,提供了9663个不同身份人的3DMM模型和对应人的年龄,性别和种族背景48%男性,52%女性,82%白人,9%亚裔,5%混血,3%黑人,1%其他构建了一套全自动构建3DMM的流程:1.使用渲染图自动提取landmark2.在landmark的引导将原始3D模板形变已匹配输入的3D数据3.构建一个全局PCA,
- bundle linux 安装,Bundler 在linux下的安装
买手联盟CE橙子
bundlelinux安装
一、什么是BundlerBundler是一个采用C和C++开发的称为sfm(struct-from-motion)的系统,它能够利用无序的图片集合(例如来自网络的图片)重建出3D的模型。最早的版本被用在PhotoTourism的项目上。Bundler的输入是一些图像、图像特征以及图像匹配信息,输出则是一个根据这些图像反应的场景的3D重建模型,伴有少量识别得到的相机以及场景几何信息。系统借用一个由L
- 枚举的构造函数中抛出异常会怎样
bylijinnan
javaenum单例
首先从使用enum实现单例说起。
为什么要用enum来实现单例?
这篇文章(
http://javarevisited.blogspot.sg/2012/07/why-enum-singleton-are-better-in-java.html)阐述了三个理由:
1.enum单例简单、容易,只需几行代码:
public enum Singleton {
INSTANCE;
- CMake 教程
aigo
C++
转自:http://xiang.lf.blog.163.com/blog/static/127733322201481114456136/
CMake是一个跨平台的程序构建工具,比如起自己编写Makefile方便很多。
介绍:http://baike.baidu.com/view/1126160.htm
本文件不介绍CMake的基本语法,下面是篇不错的入门教程:
http:
- cvc-complex-type.2.3: Element 'beans' cannot have character
Cb123456
springWebgis
cvc-complex-type.2.3: Element 'beans' cannot have character
Line 33 in XML document from ServletContext resource [/WEB-INF/backend-servlet.xml] is i
- jquery实例:随页面滚动条滚动而自动加载内容
120153216
jquery
<script language="javascript">
$(function (){
var i = 4;$(window).bind("scroll", function (event){
//滚动条到网页头部的 高度,兼容ie,ff,chrome
var top = document.documentElement.s
- 将数据库中的数据转换成dbs文件
何必如此
sqldbs
旗正规则引擎通过数据库配置器(DataBuilder)来管理数据库,无论是Oracle,还是其他主流的数据都支持,操作方式是一样的。旗正规则引擎的数据库配置器是用于编辑数据库结构信息以及管理数据库表数据,并且可以执行SQL 语句,主要功能如下。
1)数据库生成表结构信息:
主要生成数据库配置文件(.conf文
- 在IBATIS中配置SQL语句的IN方式
357029540
ibatis
在使用IBATIS进行SQL语句配置查询时,我们一定会遇到通过IN查询的地方,在使用IN查询时我们可以有两种方式进行配置参数:String和List。具体使用方式如下:
1.String:定义一个String的参数userIds,把这个参数传入IBATIS的sql配置文件,sql语句就可以这样写:
<select id="getForms" param
- Spring3 MVC 笔记(一)
7454103
springmvcbeanRESTJSF
自从 MVC 这个概念提出来之后 struts1.X struts2.X jsf 。。。。。
这个view 层的技术一个接一个! 都用过!不敢说哪个绝对的强悍!
要看业务,和整体的设计!
最近公司要求开发个新系统!
- Timer与Spring Quartz 定时执行程序
darkranger
springbean工作quartz
有时候需要定时触发某一项任务。其实在jdk1.3,java sdk就通过java.util.Timer提供相应的功能。一个简单的例子说明如何使用,很简单: 1、第一步,我们需要建立一项任务,我们的任务需要继承java.util.TimerTask package com.test; import java.text.SimpleDateFormat; import java.util.Date;
- 大端小端转换,le32_to_cpu 和cpu_to_le32
aijuans
C语言相关
大端小端转换,le32_to_cpu 和cpu_to_le32 字节序
http://oss.org.cn/kernel-book/ldd3/ch11s04.html
小心不要假设字节序. PC 存储多字节值是低字节为先(小端为先, 因此是小端), 一些高级的平台以另一种方式(大端)
- Nginx负载均衡配置实例详解
avords
[导读] 负载均衡是我们大流量网站要做的一个东西,下面我来给大家介绍在Nginx服务器上进行负载均衡配置方法,希望对有需要的同学有所帮助哦。负载均衡先来简单了解一下什么是负载均衡,单从字面上的意思来理解就可以解 负载均衡是我们大流量网站要做的一个东西,下面我来给大家介绍在Nginx服务器上进行负载均衡配置方法,希望对有需要的同学有所帮助哦。
负载均衡
先来简单了解一下什么是负载均衡
- 乱说的
houxinyou
框架敏捷开发软件测试
从很久以前,大家就研究框架,开发方法,软件工程,好多!反正我是搞不明白!
这两天看好多人研究敏捷模型,瀑布模型!也没太搞明白.
不过感觉和程序开发语言差不多,
瀑布就是顺序,敏捷就是循环.
瀑布就是需求、分析、设计、编码、测试一步一步走下来。而敏捷就是按摸块或者说迭代做个循环,第个循环中也一样是需求、分析、设计、编码、测试一步一步走下来。
也可以把软件开发理
- 欣赏的价值——一个小故事
bijian1013
有效辅导欣赏欣赏的价值
第一次参加家长会,幼儿园的老师说:"您的儿子有多动症,在板凳上连三分钟都坐不了,你最好带他去医院看一看。" 回家的路上,儿子问她老师都说了些什么,她鼻子一酸,差点流下泪来。因为全班30位小朋友,惟有他表现最差;惟有对他,老师表现出不屑,然而她还在告诉她的儿子:"老师表扬你了,说宝宝原来在板凳上坐不了一分钟,现在能坐三分钟。其他妈妈都非常羡慕妈妈,因为全班只有宝宝
- 包冲突问题的解决方法
bingyingao
eclipsemavenexclusions包冲突
包冲突是开发过程中很常见的问题:
其表现有:
1.明明在eclipse中能够索引到某个类,运行时却报出找不到类。
2.明明在eclipse中能够索引到某个类的方法,运行时却报出找不到方法。
3.类及方法都有,以正确编译成了.class文件,在本机跑的好好的,发到测试或者正式环境就
抛如下异常:
java.lang.NoClassDefFoundError: Could not in
- 【Spark七十五】Spark Streaming整合Flume-NG三之接入log4j
bit1129
Stream
先来一段废话:
实际工作中,业务系统的日志基本上是使用Log4j写入到日志文件中的,问题的关键之处在于业务日志的格式混乱,这给对日志文件中的日志进行统计分析带来了极大的困难,或者说,基本上无法进行分析,每个人写日志的习惯不同,导致日志行的格式五花八门,最后只能通过grep来查找特定的关键词缩小范围,但是在集群环境下,每个机器去grep一遍,分析一遍,这个效率如何可想之二,大好光阴都浪费在这上面了
- sudoku solver in Haskell
bookjovi
sudokuhaskell
这几天没太多的事做,想着用函数式语言来写点实用的程序,像fib和prime之类的就不想提了(就一行代码的事),写什么程序呢?在网上闲逛时发现sudoku游戏,sudoku十几年前就知道了,学生生涯时也想过用C/Java来实现个智能求解,但到最后往往没写成,主要是用C/Java写的话会很麻烦。
现在写程序,本人总是有一种思维惯性,总是想把程序写的更紧凑,更精致,代码行数最少,所以现
- java apache ftpClient
bro_feng
java
最近使用apache的ftpclient插件实现ftp下载,遇见几个问题,做如下总结。
1. 上传阻塞,一连串的上传,其中一个就阻塞了,或是用storeFile上传时返回false。查了点资料,说是FTP有主动模式和被动模式。将传出模式修改为被动模式ftp.enterLocalPassiveMode();然后就好了。
看了网上相关介绍,对主动模式和被动模式区别还是比较的模糊,不太了解被动模
- 读《研磨设计模式》-代码笔记-工厂方法模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
package design.pattern;
/*
* 工厂方法模式:使一个类的实例化延迟到子类
* 某次,我在工作不知不觉中就用到了工厂方法模式(称为模板方法模式更恰当。2012-10-29):
* 有很多不同的产品,它
- 面试记录语
chenyu19891124
招聘
或许真的在一个平台上成长成什么样,都必须靠自己去努力。有了好的平台让自己展示,就该好好努力。今天是自己单独一次去面试别人,感觉有点小紧张,说话有点打结。在面试完后写面试情况表,下笔真的好难,尤其是要对面试人的情况说明真的好难。
今天面试的是自己同事的同事,现在的这个同事要离职了,介绍了我现在这位同事以前的同事来面试。今天这位求职者面试的是配置管理,期初看了简历觉得应该很适合做配置管理,但是今天面
- Fire Workflow 1.0正式版终于发布了
comsci
工作workflowGoogle
Fire Workflow 是国内另外一款开源工作流,作者是著名的非也同志,哈哈....
官方网站是 http://www.fireflow.org
经过大家努力,Fire Workflow 1.0正式版终于发布了
正式版主要变化:
1、增加IWorkItem.jumpToEx(...)方法,取消了当前环节和目标环节必须在同一条执行线的限制,使得自由流更加自由
2、增加IT
- Python向脚本传参
daizj
python脚本传参
如果想对python脚本传参数,python中对应的argc, argv(c语言的命令行参数)是什么呢?
需要模块:sys
参数个数:len(sys.argv)
脚本名: sys.argv[0]
参数1: sys.argv[1]
参数2: sys.argv[
- 管理用户分组的命令gpasswd
dongwei_6688
passwd
NAME: gpasswd - administer the /etc/group file
SYNOPSIS:
gpasswd group
gpasswd -a user group
gpasswd -d user group
gpasswd -R group
gpasswd -r group
gpasswd [-A user,...] [-M user,...] g
- 郝斌老师数据结构课程笔记
dcj3sjt126com
数据结构与算法
<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
- yii2 cgridview加上选择框进行操作
dcj3sjt126com
GridView
页面代码
<?=Html::beginForm(['controller/bulk'],'post');?>
<?=Html::dropDownList('action','',[''=>'Mark selected as: ','c'=>'Confirmed','nc'=>'No Confirmed'],['class'=>'dropdown',])
- linux mysql
fypop
linux
enquiry mysql version in centos linux
yum list installed | grep mysql
yum -y remove mysql-libs.x86_64
enquiry mysql version in yum repositoryyum list | grep mysql oryum -y list mysql*
install mysq
- Scramble String
hcx2013
String
Given a string s1, we may represent it as a binary tree by partitioning it to two non-empty substrings recursively.
Below is one possible representation of s1 = "great":
- 跟我学Shiro目录贴
jinnianshilongnian
跟我学shiro
历经三个月左右时间,《跟我学Shiro》系列教程已经完结,暂时没有需要补充的内容,因此生成PDF版供大家下载。最近项目比较紧,没有时间解答一些疑问,暂时无法回复一些问题,很抱歉,不过可以加群(334194438/348194195)一起讨论问题。
----广告-----------------------------------------------------
- nginx日志切割并使用flume-ng收集日志
liyonghui160com
nginx的日志文件没有rotate功能。如果你不处理,日志文件将变得越来越大,还好我们可以写一个nginx日志切割脚本来自动切割日志文件。第一步就是重命名日志文件,不用担心重命名后nginx找不到日志文件而丢失日志。在你未重新打开原名字的日志文件前,nginx还是会向你重命名的文件写日志,linux是靠文件描述符而不是文件名定位文件。第二步向nginx主
- Oracle死锁解决方法
pda158
oracle
select p.spid,c.object_name,b.session_id,b.oracle_username,b.os_user_name from v$process p,v$session a, v$locked_object b,all_objects c where p.addr=a.paddr and a.process=b.process and c.object_id=b.
- java之List排序
shiguanghui
list排序
在Java Collection Framework中定义的List实现有Vector,ArrayList和LinkedList。这些集合提供了对对象组的索引访问。他们提供了元素的添加与删除支持。然而,它们并没有内置的元素排序支持。 你能够使用java.util.Collections类中的sort()方法对List元素进行排序。你既可以给方法传递
- servlet单例多线程
utopialxw
单例多线程servlet
转自http://www.cnblogs.com/yjhrem/articles/3160864.html
和 http://blog.chinaunix.net/uid-7374279-id-3687149.html
Servlet 单例多线程
Servlet如何处理多个请求访问?Servlet容器默认是采用单实例多线程的方式处理多个请求的:1.当web服务器启动的