信号处理的知识:
- scipy.signal.detrend(): 从信号中删除线性趋势:
from scipy import signal
import matplotlib.pyplot as pl
t = np.linspace(0, 5, 100)
x = t + np.random.normal(size=100)
pl.plot(t, x, linewidth=3)
pl.plot(t, signal.detrend(x), linewidth=3)
效果展示:
- scipy.signal.resample(): 用FFT从信号中抽出n个点。
t = np.linspace(0, 5, 100)
x = np.sin(t)
pl.plot(t, x, linewidth=3)
pl.plot(t[::2], signal.resample(x, 50), 'ko')
效果展示:
信号的滤波介绍:
scipy模块使用Python实现简单滤波处理,包括内容有1.低通滤波,2.高通滤波,3.带通滤波,4.带阻滤波器。
简单的理解就是低通滤波指的是去除高于某一阈值频率的信号;高通滤波去除低于某一频率的信号;带通滤波指的是类似低通高通的结合保留中间频率信号;带阻滤波也是低通高通的结合只是过滤掉的是中间部分。
通过时域转换为频域,在频域信号中去除相应频域信号,最后在逆转换还原为时域型号。
可以消除一些干扰信号,以低通滤波为例,例如我们如果只是统计脉搏信号波形,应该在1Hz左右,却发现波形信号上有很多噪音,这些噪音都是成百上千Hz的,这些对于脉搏信号波形就属于无用的噪音,我们就可以通过低通滤波器将超出某一阈值的信号过滤掉,此时得到的波形就会比较平滑了
1).低通滤波
这里假设采样频率为1000hz,信号本身最大的频率为500hz,要滤除400hz以上频率成分,即截至频率为400hz,则wn=2*400/1000=0.8。Wn=0.8
from scipy import signal
b, a = signal.butter(8, 0.8, 'lowpass') #配置滤波器 8 表示滤波器的阶数
filtedData = signal.filtfilt(b, a, data) #data为要过滤的信号
2).高通滤波
这里假设采样频率为1000hz,信号本身最大的频率为500hz,要滤除100hz以下频率成分,即截至频率为100hz,则wn=2*100/1000=0.2。Wn=0.2
from scipy import signal
b, a = signal.butter(8, 0.2, 'highpass') #配置滤波器 8 表示滤波器的阶数
filtedData = signal.filtfilt(b, a, data) #data为要过滤的信号
3).带通滤波
这里假设采样频率为1000hz,信号本身最大的频率为500hz,要滤除100hz以下,400hz以上频率成分,即截至频率为100,400hz,则wn1=2*100/1000=0.2,Wn1=0.2; wn2=2*400/1000=0.8,Wn2=0.8。Wn=[0.02,0.8]
from scipy import signal
b, a = signal.butter(8, [0.2,0.8], 'bandpass') #配置滤波器 8 表示滤波器的阶数
filtedData = signal.filtfilt(b, a, data) #data为要过滤的信号
4).带阻滤波
这里假设采样频率为1000hz,信号本身最大的频率为500hz,要滤除100hz以上,400hz以下频率成分,即截至频率为100,400hz,则wn1=2*100/1000=0.2,Wn1=0.2; wn2=2*400/1000=0.8,Wn2=0.8。Wn=[0.02,0.8],和带通相似,但是带通是保留中间,而带阻是去除。
from scipy import signal
b, a = signal.butter(8, [0.2,0.8], 'bandstop') #配置滤波器 8 表示滤波器的阶数
filtedData = signal.filtfilt(b, a, data) #data为要过滤的信号
函数的介绍:
1、滤波函数
scipy.signal.filtfilt(b, a, x, axis=-1, padtype='odd', padlen=None, method='pad', irlen=None)
输入参数:
b: 滤波器的分子系数向量
a: 滤波器的分母系数向量
x: 要过滤的数据数组。(array型)
axis: 指定要过滤的数据数组x的轴
padtype: 必须是“奇数”、“偶数”、“常数”或“无”。这决定了用于过滤器应用的填充信号的扩展类型。{‘odd’, ‘even’, ‘constant’, None}
padlen:在应用滤波器之前在轴两端延伸X的元素数目。此值必须小于要滤波元素个数- 1。(int型或None)
method:确定处理信号边缘的方法。当method为“pad”时,填充信号;填充类型padtype和padlen决定,irlen被忽略。当method为“gust”时,使用古斯塔夫森方法,而忽略padtype和padlen。{“pad” ,“gust”}
irlen:当method为“gust”时,irlen指定滤波器的脉冲响应的长度。如果irlen是None,则脉冲响应的任何部分都被忽略。对于长信号,指定irlen可以显著改善滤波器的性能。(int型或None)
输出参数:
y:滤波后的数据数组
2、滤波器构造函数(Butterworth滤波器)
scipy.signal.butter(N, Wn, btype='low', analog=False, output='ba')
输入参数:
N:滤波器的阶数
Wn:归一化截止频率。计算公式Wn=2*截止频率/采样频率。(注意:根据采样定理,采样频率要大于两倍的信号本身最大的频率,才能还原信号。截止频率一定小于信号本身最大的频率,所以Wn一定在0和1之间)。当构造带通滤波器或者带阻滤波器时,Wn为长度为2的列表。
btype : 滤波器类型{‘lowpass’, ‘highpass’, ‘bandpass’, ‘bandstop’},
output : 输出类型{‘ba’, ‘zpk’, ‘sos’},
输出参数:
b,a: IIR滤波器的分子(b)和分母(a)多项式系数向量。output='ba'
z,p,k: IIR滤波器传递函数的零点、极点和系统增益. output= 'zpk'
sos: IIR滤波器的二阶截面表示。output= 'sos'
1.txt 存放信号数据
代码实战:
from scipy import signal
import matplotlib.pyplot as pl
import numpy as np
#处理基线漂移
#scipy.signal.detrend(): 从信号中删除线性趋势:
# t = np.linspace(0,5,100)
# x = t + np.random.normal(size=100)
# print(x)
# pl.plot(t, x, linewidth=3)
# pl.plot(t, signal.detrend(x), linewidth=3)
# pl.show()
#读取信号数据
def readtxt(path):
with open(path,'r') as f:
str=f.readline()
list = str.split(' ')
list1=[];
for i,x in enumerate(list):
if ((i%5 == 0) or (i%5 == 1) or (i%5 == 2)) and x !='':
list1.append(float(x))
return list1
#处理基线漂移
def singnal(path):
list=readtxt(path)
print(len(list))
#
list3=[]
list2=[]
#切片从1000以后的数据开始计算
for i,x in enumerate(list[38000::]):
list2.append(float((i+1)*0.002))
list3.append(x)
#处理基线漂移
list_jx=signal.detrend(list3)
#巴特沃斯滤波器
b, a = signal.butter(8, [0.2, 0.8], 'bandstop') # 配置滤波器 8 表示滤波器的阶数
# 信号进行滤波处理
filtedData = signal.filtfilt(b, a, list_jx) # data为要过滤的信号
#图表绘制
pl.plot(list2, list3, linewidth=1)
pl.plot(list2,filtedData,linewidth=1)
pl.show()
if __name__=="__main__":
singnal('1.txt')
效果展示:
这个滤波和处理基线不是太明显。
参考地址:https://www.bookstack.cn/read/scipy-lecture-notes_cn/spilt.9.12356b8765f6ac60.md