PaddleNLP

文章目录

    • 关于 PaddleNLP
      • 安装
    • 快捷使用 - Taskflow API


关于 PaddleNLP

官方主页:https://www.paddlepaddle.org.cn/paddle/paddlenlp
Github : https://github.com/PaddlePaddle/PaddleNLP
使用文档:https://paddlenlp.readthedocs.io/zh/latest/get_started/quick_start.html


安装

pip3 install paddlepaddle
pip3 install paddlenlp

快捷使用 - Taskflow API

详情可参考:
https://github.com/PaddlePaddle/PaddleNLP/blob/develop/docs/model_zoo/taskflow.md


这里简单列举一些使用方法:

from paddlenlp import Taskflow

# 分词
# 默认模式————实体粒度分词,在精度和速度上的权衡,基于百度LAC
>>> seg = Taskflow("word_segmentation")
>>> seg("近日国家卫健委发布第九版新型冠状病毒肺炎诊疗方案")
['近日', '国家卫健委', '发布', '第九版', '新型', '冠状病毒肺炎', '诊疗', '方案']

# 批量样本输入,平均速度更快
>>> seg(["第十四届全运会在西安举办", "三亚是一个美丽的城市"])
[['第十四届', '全运会', '在', '西安', '举办'], ['三亚', '是', '一个', '美丽', '的', '城市']]

# 加载自定义词典
seg = Taskflow("word_segmentation", user_dict="user_dict.txt")


# 词性标注 
>>> tag = Taskflow("pos_tagging")
>>> tag("第十四届全运会在西安举办")
[('第十四届', 'm'), ('全运会', 'nz'), ('在', 'p'), ('西安', 'LOC'), ('举办', 'v')]

# 命名实体识别
>>> ner = Taskflow("ner")
>>> ner("《孤女》是2010年九州出版社出版的小说,作者是余兼羽")
[('《', 'w'), ('孤女', '作品类_实体'), ('》', 'w'), ('是', '肯定词'), ('2010年', '时间类'), ('九州出版社', '组织机构类'), ('出版', '场景事件'), ('的', '助词'), ('小说', '作品类_概念'), (',', 'w'), ('作者', '人物类_概念'), ('是', '肯定词'), ('余兼羽', '人物类_实体')]

# 依存句法分析
>>> ddp = Taskflow("dependency_parsing")
>>> ddp("2月8日谷爱凌夺得北京冬奥会第三金")
[{'word': ['2月8日', '谷爱凌', '夺得', '北京冬奥会', '第三金'], 'head': [3, 3, 0, 5, 3], 'deprel': ['ADV', 'SBV', 'HED', 'ATT', 'VOB']}]

>>> ddp.from_segments([['2月8日', '谷爱凌', '夺得', '北京冬奥会', '第三金']])

# 依存关系可视化
>>> ddp = Taskflow("dependency_parsing", return_visual=True)
>>> result = ddp("2月8日谷爱凌夺得北京冬奥会第三金")[0]['visual']
>>> import cv2
>>> cv2.imwrite('test.png', result)

# 解语知识标注 
>>> wordtag = Taskflow("knowledge_mining")
>>> wordtag("《孤女》是2010年九州出版社出版的小说,作者是余兼羽")
[{'text': '《孤女》是2010年九州出版社出版的小说,作者是余兼羽', 'items': [{'item': '《', 'offset': 0, 'wordtag_label': 'w', 'length': 1},...  {'item': '余兼羽', 'offset': 24, 'wordtag_label': '人物类_实体', 'length': 3}]}]

# 文本纠错
# 融合拼音特征的端到端文本纠错模型ERNIE-CSC
>>> corrector = Taskflow("text_correction")
# 单条输入
>>> corrector('遇到逆竟时,我们必须勇于面对,而且要愈挫愈勇。')
[{'source': '遇到逆竟时,我们必须勇于面对,而且要愈挫愈勇。', 'target': '遇到逆境时,我们必须勇于面对,而且要愈挫愈勇。', 'errors': [{'position': 3, 'correction': {'竟': '境'}}]}]

# 文本相似度
>>> similarity = Taskflow("text_similarity")
>>> similarity([["春天适合种什么花?", "春天适合种什么菜?"]])
[{'text1': '春天适合种什么花?', 'text2': '春天适合种什么菜?', 'similarity': 0.8340253}]

# 情感倾向分析
# 默认使用bilstm模型进行预测,速度快
>>> senta = Taskflow("sentiment_analysis")
>>> senta("这个产品用起来真的很流畅,我非常喜欢")
[{'text': '这个产品用起来真的很流畅,我非常喜欢', 'label': 'positive', 'score': 0.9938690066337585}]


# 生成式问答
>>> qa = Taskflow("question_answering")
# 单条输入
>>> qa("中国的国土面积有多大?")
[{'text': '中国的国土面积有多大?', 'answer': '960万平方公里。'}]

# 智能写诗
>>> poetry = Taskflow("poetry_generation")
# 单条输入
>>> poetry("林密不见人")
[{'text': '林密不见人', 'answer': ',但闻人语响。'}]

# 开放域对话 
>>> dialogue = Taskflow("dialogue")
>>> dialogue(["吃饭了吗"])
['刚吃完饭,你在干什么呢?']
  

你可能感兴趣的:(PaddleNLP)