- 万向节死锁公式推导
微小冷
机器人欧拉角旋转矩阵万向节万向节死锁旋转轴旋转
文章目录欧拉角的万向节死锁旋转轴欧拉角的万向节死锁如果把刚体的旋转沿着三个旋转轴进行拆分,那么可以变成三个旋转角的叠加,这三个旋转角就是欧拉角,分别对应旋转矩阵,为了书写方便,记Sθ=sinθ,Cθ=cosθS_\theta=\sin\theta,C_\theta=\cos\thetaSθ=sinθ,Cθ=cosθ,则三个旋转矩阵为Rx(θ)R_x(\theta)Rx(θ)Ry(θ)R_y(\
- 开源人工神经网络库(OpenANN)
deepdata_cn
人工智能神经网络
OpenANN(OpenANN,OpenArtificialNeuralNetworkLibrary)是一个开源的人工神经网络库,基于C++编写,依赖Eigen3库进行高效的矩阵运算,使用CMake进行项目构建,支持多种神经网络架构,包括前馈神经网络、卷积神经网络和循环神经网络等,适用于图像识别、自然语言处理、时间序列预测等多种场景。提供数据预处理、模型保存和加载、超参数优化等功能。支持GPU加速
- 如何让AI真正理解你的意图(自适应Prompt实战指南)
nine是个工程师
大语言模型人工智能prompt
目前的LLM模型,在理解用户意图方面,正在使用自适应Prompt技术,来提升模型的理解能力。目前使用deepseek推理模型能明显看到自适应的一个过程。前言:为什么你的AI总是"答非所问"?相信很多人都遇到过这样的情况:你问:“帮我写一个Python爬虫”AI答:给你一堆理论知识和完整教程(你只想要简单代码)你问:“推荐一部电影”AI答:推荐了《教父》(你想看轻松喜剧)你问:“解释一下机器学习”A
- AI人工智能与机器学习的大数据融合应用
AI智能探索者
人工智能机器学习大数据ai
AI人工智能与机器学习的大数据融合应用关键词:AI人工智能、机器学习、大数据、融合应用、数据挖掘摘要:本文深入探讨了AI人工智能与机器学习在大数据融合应用方面的相关内容。首先介绍了研究的背景、目的、预期读者和文档结构,对核心术语进行了清晰定义。接着阐述了AI、机器学习和大数据的核心概念及相互联系,给出了形象的文本示意图和Mermaid流程图。详细讲解了核心算法原理,并通过Python源代码进行说明
- AI人工智能遇上TensorFlow:技术融合新趋势
AI大模型应用之禅
人工智能tensorflowpythonai
AI人工智能遇上TensorFlow:技术融合新趋势关键词:人工智能、TensorFlow、深度学习、神经网络、机器学习、技术融合、AI开发摘要:本文深入探讨了人工智能技术与TensorFlow框架的融合发展趋势。我们将从基础概念出发,详细分析TensorFlow在AI领域的核心优势,包括其架构设计、算法实现和实际应用。文章包含丰富的技术细节,如神经网络原理、TensorFlow核心算法实现、数学
- MAXCC可编程中控集成音频处理器功能全解析
geffen1688
中控主机3dweb3css3avs3
格芬MAXCC可编程中控集成音频处理器功能全解析一、技术架构与核心功能格芬MAXCC可编程中控矩阵一体机(如GF-MIXCC系列)通过高度集成化设计,将中控系统、音频矩阵、视频矩阵及环境控制功能融为一体,其音频处理能力尤为突出:音频矩阵与混音功能8进8出音频矩阵:支持Dante网络音频传输,采样率达24bit/48KHz,配备高性能A/DD/A转换器和32-bit浮点DSP处理器,确保音频信号的高
- 4K超高清无缝切换与画面分割矩阵
格芬科技4K超高清无缝切换与画面分割矩阵技术解析格芬科技作为音视频传输与控制领域的领先企业,其4K超高清无缝切换与画面分割矩阵产品以高性能、高灵活性和高可靠性为核心优势,广泛应用于会议室、指挥中心、舞台演出、教育培训等场景。以下从产品特性、技术规格、应用场景及选型建议四个维度进行详细解析:一、核心产品与技术特性4K@60Hz超高清支持分辨率与刷新率:格芬科技矩阵产品(如GF-HDMI0404U、G
- HDMI高清矩阵与无缝拼接矩阵 OEM定制控标
geffen08
TPHD141Kvc-1g711es13
HDMI高清矩阵与无缝拼接矩阵:GEFFEN/GF-MIX系列介绍GEFFEN/GF-MIX系列矩阵是一款集成了高性能、高灵活性和高可靠性于一身的音视频处理设备,特别适用于需要高清视频信号切换、拼接和显示的场合。HDMI高清矩阵主要功能与特点:高清视频信号切换:GEFFEN/GF-MIX系列HDMI高清矩阵支持多路HDMI输入和多路HDMI输出,能够轻松实现高清视频信号之间的快速切换。无缝切换技术
- 无缝矩阵支持音频分离带画面分割功能的全面解析
geffen1688
分类分布式
一、技术原理与实现方式1. 音频分离技术核心功能:HDMI无缝矩阵通过硬件或软件实现音频加嵌与分离功能,支持多设备音频的独立处理与增强。实现方式:音频加嵌:将外部音频信号(如麦克风、调音台)嵌入HDMI信号中传输,适用于家庭影院、会议系统等场景。音频分离:将HDMI信号中的音频独立输出至外部设备(如音响、音频处理器),支持多通道数字音频的交叉切换。技术支撑:采用32bitARM核心芯片(
- 深入解读MCP:构建低延迟、高吞吐量通信中间件
LCG元
MCP中间件
目录MCP核心架构设计MCP中间件架构图协议设计与消息格式MCP协议头结构消息体编码示例核心模块实现1.高性能网络层(基于Netty)2.零拷贝内存队列3.高效路由引擎4.消息持久化模块性能优化技巧1.批量合并写操作2.CPU缓存行优化3.内存池技术可靠性保障机制消息处理流程图实现代码:消息重试机制性能基准测试压测环境配置性能测试结果生产部署方案集群拓扑图部署脚本示例总结与最佳实践性能优化矩阵部署
- 如何使用Python控制笔记本电脑屏幕亮度?
很酷的站长
编程笔记电脑python开发语言
Python已成为世界上最受欢迎的编程语言之一,这要归功于它的简单性、多功能性和广泛的应用程序。凭借其广泛的库和框架,Python可用于从Web开发到机器学习以及介于两者之间的任何内容。在Python中,最流行的数据分析和操作库之一是Pandas,它提供了处理表格数据的强大工具。在本教程中,我们将使用Python和屏幕亮度控制库来探索如何控制笔记本电脑屏幕亮度。我们将向您展示如何使用Python通
- 10、 量子神经网络:从理论到实践
安检
量子神经网络PennyLaneQiskit
量子神经网络:从理论到实践1.量子神经网络简介量子神经网络(QuantumNeuralNetworks,QNNs)是量子计算与经典机器学习相
- 深度学习之迁移学习
路溪非溪
人工智能迁移学习机器学习
认识迁移学习迁移学习(TransferLearning)是机器学习中的一种重要技术,其核心思想是将在一个任务上学习到的知识(模型参数、特征表示等),迁移应用到另一个相关但不同的任务中,从而提升新任务的学习效率和性能,尤其是在新任务数据有限的情况下。一、迁移学习的核心动机传统机器学习通常要求为每个新任务收集大量标注数据并从头训练模型,但现实中面临以下挑战:数据稀缺:例如医疗影像分析(罕见疾病样本少)
- 【机器学习】解密计算机视觉:CNN、目标检测与图像识别核心技术(第25天)
吴师兄大模型
0基础实现机器学习入门到精通机器学习计算机视觉cnn人工智能目标检测图像识别pytorch
Langchain系列文章目录01-玩转LangChain:从模型调用到Prompt模板与输出解析的完整指南02-玩转LangChainMemory模块:四种记忆类型详解及应用场景全覆盖03-全面掌握LangChain:从核心链条构建到动态任务分配的实战指南04-玩转LangChain:从文档加载到高效问答系统构建的全程实战05-玩转LangChain:深度评估问答系统的三种高效方法(示例生成、手
- 蓝桥杯51单片机设计
#矩阵键盘#①IO线与关系思考,俩个引脚:一个输入高电平一个输入低电平,当俩者接到一起他们的点评情况是什么?单片机IO口内部等效图②矩阵键盘原理判断按键按下的原理:如果未按下时俩个引脚的电平不一样(一高一低),则按下时高电平的引脚为低电平,我们只需要检测高电平引脚是否变为低电平就可以判断按键是否被按下(总结:发生变化的总是高电平的引脚)③矩阵键盘逐行扫描法先让第一行按键的公共引脚为低电平,第二行到
- 329. 矩阵中的最长递增路径C语言
给定一个mxn整数矩阵matrix,找出其中最长递增路径的长度。对于每个单元格,你可以往上,下,左,右四个方向移动。你不能在对角线方向上移动或移动到边界外(即不允许环绕)。来源:力扣(LeetCode)链接:https://leetcode-cn.com/problems/longest-increasing-path-in-a-matrix著作权归领扣网络所有。商业转载请联系官方授权,非商业转载
- 力扣 329. 矩阵中的最长递增路径
乔碧萝·乔斯达
leetcode矩阵算法
跳转至矩阵中的最长递增路径https://leetcode-cn.com/problems/longest-increasing-path-in-a-matrix/题目给定一个mxn整数矩阵matrix,找出其中最长递增路径的长度。对于每个单元格,你可以往上,下,左,右四个方向移动。你不能在对角线方向上移动或移动到边界外(即不允许环绕)。示例1:输入:matrix=[[9,9,4],[6,6,8]
- 如何使用小红书矩阵系统:提升内容管理与发布的指南
小红书作为一个集社区分享与电商功能于一体的平台,吸引了大量的用户和创作者。随着内容创作和账号管理的复杂性增加,小红书矩阵系统成为了一个强大的工具,帮助用户提高效率和扩大影响力。本文将详细介绍如何使用小红书矩阵系统,以优化您的内容管理和发布策略。小红书矩阵系统简介小红书矩阵系统是一个集成解决方案,旨在帮助用户高效地管理多个账号、创作内容、安排发布计划,并通过智能工具提升用户体验。它通常包含以下核心功
- 小红书矩阵源码(多账号发布+批量剪辑视频+一键分发)
在数字化时代,社交媒体已成为品牌推广和个人表达的重要渠道。小红书作为国内领先的生活分享社区,其矩阵源码的出现,为多账号运营提供了前所未有的便利。本文将深入探讨小红书矩阵源码如何通过多账号发布、批量剪辑视频、一键分发以及持续迭代更新等功能,为用户带来革命性的运营体验。一、小红书矩阵源码:社交媒体运营的智能助手小红书矩阵源码是一个专为社交媒体运营设计的智能系统,它通过集成化的解决方案,帮助用户高效管理
- dp力扣 329. 矩阵中的最长递增路径
329.矩阵中的最长递增路径题目:链接https://leetcode.cn/problems/longest-increasing-path-in-a-matrix/代码:classSolution{public:structnode{inti;intj;intv;};staticboolcmp(nodex,nodey){returnx.vver;intlongestIncreasingPath
- 英伟达终为 CUDA 添加原生 Python 支持,他有什么目的?
朱卫军 AI
python开发语言
CUDA原来只支持C/C++/Fortran,在2025的CES上宣布支持原生Python其实是不得已而为之,一方面现在Python的AI开发者数量过于庞大,达到数千万级别,而CUDA仅几百万,CUDA想扩大自己的用户圈子,只能拉Python入伙。另一方面,Python生态的计算库实在太强大,比如numpy,几乎垄断了数组计算,还有像scipy、keras等,已经成为机器学习的主流工具,CUDA必
- 海外社媒营销:实现多账号矩阵与精准触达
在全球社交媒体用户突破50亿的当下,TikTok、Instagram、Facebook等平台已成为品牌触达海外消费者的核心战场。然而,随着平台风控升级与用户需求分化,海外社媒营销正面临两大核心挑战:多账号矩阵运营易被封禁(TikTok单月封禁超200万账号)、内容触达缺乏精准度(全球用户语言/文化/兴趣差异超300种)。亚矩阵云手机通过虚拟化环境隔离、AI行为模拟引擎、动态内容适配系统三大核心技术
- [算法题解详细]DFS解力扣329矩阵中的最长递增路径
2401_84092508
程序员深度优先算法leetcode
输入:matrix=[[3,4,5],[3,2,6],[2,2,1]]输出:4解释:最长递增路径是[3,4,5,6]。注意不允许在对角线方向上移动。示例3输入:matrix=[[1]]输出:1提示m==matrix.lengthn==matrix[i].length1<=m,n<=2000<=matrix[i][j]<=2^31-1思路刚看到这题的时候我以为这题和岛屿最大面积这题差不多,但是提交了
- Python爬虫实战:爬取网易云音乐热评的完整教程
Python爬虫项目
python爬虫开发语言能源selenium
1.背景介绍:为什么爬网易云音乐热评?网易云音乐是中国最受欢迎的音乐平台之一,其用户活跃度极高。评论区往往蕴含丰富的情感表达和用户反馈,是音乐数据分析、情感分析、推荐算法等领域的宝贵数据源。爬取热评可以用于:歌曲口碑分析用户情绪挖掘热门歌曲趋势追踪机器学习训练数据准备但网易云音乐对评论接口进行了加密,直接请求很难成功。本文将帮你攻克这一难点。2.网易云音乐热评接口分析我们首先用浏览器开发者工具(C
- Python编程菜鸟教程:从入门到精通的完全指南_python菜鸟教程
2401_89285717
python开发语言
我们将介绍Python在数据科学、机器学习、Web开发等方面的应用,并带你了解Python社区和生态系统。基础入门Python安装:在官方网站下载安装包,根据不同操作系统进行安装。Mac用户可直接使用Homebrew进行安装Windows用户需下载安装包后进行手动安装Linux用户可使用apt-get或yum进行安装基础语法:Python是一种解释型语言,支持面向对象、函数式和面向过程等多种编程范
- 算法化资本——智能投顾技术重构金融生态的深度解析
田园Coder
人工智能科普人工智能科普
金融市场的数字化进程正经历着本质性跃迁。当传统交易大厅的开放式喊价被服务器集群的低频嗡鸣取代,当投资决策从人类直觉转向概率矩阵计算,一场由人工智能驱动的资本范式革命已悄然降临。智能投顾作为这场变革的核心载体,其技术架构不仅重塑财富管理的运作逻辑,更在认知层面挑战着金融市场的存在根基。理解这场变革的深度与广度,需要穿透技术表象,审视算法与资本结合引发的复杂生态嬗变。智能投顾系统的技术支柱建立于三重认
- 03 数据可视化的世界非常广阔,除了已提到的类型,还有许多更细分或前沿的可视化形式。
晨曦543210
信息可视化人工智能
十五、机器学习与数据科学专用图表特征重要性图(FeatureImportancePlot)用途:展示机器学习模型中各特征对预测结果的贡献度。示例:随机森林模型中影响房价预测的关键因素。混淆矩阵热力图(ConfusionMatrixHeatmap)用途:分类模型性能评估,显示预测结果与真实标签的对比。示例:疾病诊断模型的真阳性/假阳性分布。学习曲线(LearningCurve)用途:分析模型训练过程
- AI“大航海”时代:企业人力资源的AI-HR实践与效能提升策略
在数字化浪潮的推动下,人工智能(AI)正以前所未有的速度渗透各行各业,人力资源管理(HR)领域也不例外。AI技术的引入与应用落地,不仅提升HR管理效率,更在深层次上带来人力资源运作模式的变革。什么是AI-HR所谓AI-HR,是指将人工智能技术应用于人力资源管理,并通过机器学习、自然语言处理、数据挖掘等技术,优化招聘、培训、绩效评估、员工关系等人力资源各个业务模块。近年来,随着AI技术的成熟和普及,
- 【LeetCode 热题 100】73. 矩阵置零——(解法一)空间复杂度 O(M + N)
xumistore
LeetCodeleetcode矩阵算法
Problem:73.矩阵置零题目:给定一个mxn的矩阵,如果一个元素为0,则将其所在行和列的所有元素都设为0。请使用原地算法。文章目录整体思路完整代码时空复杂度时间复杂度:O(M*N)空间复杂度:O(M+N)整体思路这段代码旨在解决“矩阵置零”问题,它通过HashSet来存储需要置零的行和列的索引,并在一个统一的阶段完成置零操作。算法的整体思路是“先标记,后置零”:第一阶段:使用HashSet进
- 剑指 Offer 04. 二维数组中的查找
菜菜今天学习了吗
leetcode刷题leetcode算法数据结构
在一个n*m的二维数组中,每一行都按照从左到右递增的顺序排序,每一列都按照从上到下递增的顺序排序。请完成一个高效的函数,输入这样的一个二维数组和一个整数,判断数组中是否含有该整数。示例:现有矩阵matrix如下:[[1,4,7,11,15],[2,5,8,12,19],[3,6,9,16,22],[10,13,14,17,24],[18,21,23,26,30]]给定target=5,返回true
- java封装继承多态等
麦田的设计者
javaeclipsejvmcencapsulatopn
最近一段时间看了很多的视频却忘记总结了,现在只能想到什么写什么了,希望能起到一个回忆巩固的作用。
1、final关键字
译为:最终的
&
- F5与集群的区别
bijian1013
weblogic集群F5
http请求配置不是通过集群,而是F5;集群是weblogic容器的,如果是ejb接口是通过集群。
F5同集群的差别,主要还是会话复制的问题,F5一把是分发http请求用的,因为http都是无状态的服务,无需关注会话问题,类似
- LeetCode[Math] - #7 Reverse Integer
Cwind
java题解MathLeetCodeAlgorithm
原题链接:#7 Reverse Integer
要求:
按位反转输入的数字
例1: 输入 x = 123, 返回 321
例2: 输入 x = -123, 返回 -321
难度:简单
分析:
对于一般情况,首先保存输入数字的符号,然后每次取输入的末位(x%10)作为输出的高位(result = result*10 + x%10)即可。但
- BufferedOutputStream
周凡杨
首先说一下这个大批量,是指有上千万的数据量。
例子:
有一张短信历史表,其数据有上千万条数据,要进行数据备份到文本文件,就是执行如下SQL然后将结果集写入到文件中!
select t.msisd
- linux下模拟按键输入和鼠标
被触发
linux
查看/dev/input/eventX是什么类型的事件, cat /proc/bus/input/devices
设备有着自己特殊的按键键码,我需要将一些标准的按键,比如0-9,X-Z等模拟成标准按键,比如KEY_0,KEY-Z等,所以需要用到按键 模拟,具体方法就是操作/dev/input/event1文件,向它写入个input_event结构体就可以模拟按键的输入了。
linux/in
- ContentProvider初体验
肆无忌惮_
ContentProvider
ContentProvider在安卓开发中非常重要。与Activity,Service,BroadcastReceiver并称安卓组件四大天王。
在android中的作用是用来对外共享数据。因为安卓程序的数据库文件存放在data/data/packagename里面,这里面的文件默认都是私有的,别的程序无法访问。
如果QQ游戏想访问手机QQ的帐号信息一键登录,那么就需要使用内容提供者COnte
- 关于Spring MVC项目(maven)中通过fileupload上传文件
843977358
mybatisspring mvc修改头像上传文件upload
Spring MVC 中通过fileupload上传文件,其中项目使用maven管理。
1.上传文件首先需要的是导入相关支持jar包:commons-fileupload.jar,commons-io.jar
因为我是用的maven管理项目,所以要在pom文件中配置(每个人的jar包位置根据实际情况定)
<!-- 文件上传 start by zhangyd-c --&g
- 使用svnkit api,纯java操作svn,实现svn提交,更新等操作
aigo
svnkit
原文:http://blog.csdn.net/hardwin/article/details/7963318
import java.io.File;
import org.apache.log4j.Logger;
import org.tmatesoft.svn.core.SVNCommitInfo;
import org.tmateso
- 对比浏览器,casperjs,httpclient的Header信息
alleni123
爬虫crawlerheader
@Override
protected void doGet(HttpServletRequest req, HttpServletResponse res) throws ServletException, IOException
{
String type=req.getParameter("type");
Enumeration es=re
- java.io操作 DataInputStream和DataOutputStream基本数据流
百合不是茶
java流
1,java中如果不保存整个对象,只保存类中的属性,那么我们可以使用本篇文章中的方法,如果要保存整个对象 先将类实例化 后面的文章将详细写到
2,DataInputStream 是java.io包中一个数据输入流允许应用程序以与机器无关方式从底层输入流中读取基本 Java 数据类型。应用程序可以使用数据输出流写入稍后由数据输入流读取的数据。
- 车辆保险理赔案例
bijian1013
车险
理赔案例:
一货运车,运输公司为车辆购买了机动车商业险和交强险,也买了安全生产责任险,运输一车烟花爆竹,在行驶途中发生爆炸,出现车毁、货损、司机亡、炸死一路人、炸毁一间民宅等惨剧,针对这几种情况,该如何赔付。
赔付建议和方案:
客户所买交强险在这里不起作用,因为交强险的赔付前提是:“机动车发生道路交通意外事故”;
如果是交通意外事故引发的爆炸,则优先适用交强险条款进行赔付,不足的部分由商业
- 学习Spring必学的Java基础知识(5)—注解
bijian1013
javaspring
文章来源:http://www.iteye.com/topic/1123823,整理在我的博客有两个目的:一个是原文确实很不错,通俗易懂,督促自已将博主的这一系列关于Spring文章都学完;另一个原因是为免原文被博主删除,在此记录,方便以后查找阅读。
有必要对
- 【Struts2一】Struts2 Hello World
bit1129
Hello world
Struts2 Hello World应用的基本步骤
创建Struts2的Hello World应用,包括如下几步:
1.配置web.xml
2.创建Action
3.创建struts.xml,配置Action
4.启动web server,通过浏览器访问
配置web.xml
<?xml version="1.0" encoding="
- 【Avro二】Avro RPC框架
bit1129
rpc
1. Avro RPC简介 1.1. RPC
RPC逻辑上分为二层,一是传输层,负责网络通信;二是协议层,将数据按照一定协议格式打包和解包
从序列化方式来看,Apache Thrift 和Google的Protocol Buffers和Avro应该是属于同一个级别的框架,都能跨语言,性能优秀,数据精简,但是Avro的动态模式(不用生成代码,而且性能很好)这个特点让人非常喜欢,比较适合R
- lua set get cookie
ronin47
lua cookie
lua:
local access_token = ngx.var.cookie_SGAccessToken
if access_token then
ngx.header["Set-Cookie"] = "SGAccessToken="..access_token.."; path=/;Max-Age=3000"
end
- java-打印不大于N的质数
bylijinnan
java
public class PrimeNumber {
/**
* 寻找不大于N的质数
*/
public static void main(String[] args) {
int n=100;
PrimeNumber pn=new PrimeNumber();
pn.printPrimeNumber(n);
System.out.print
- Spring源码学习-PropertyPlaceholderHelper
bylijinnan
javaspring
今天在看Spring 3.0.0.RELEASE的源码,发现PropertyPlaceholderHelper的一个bug
当时觉得奇怪,上网一搜,果然是个bug,不过早就有人发现了,且已经修复:
详见:
http://forum.spring.io/forum/spring-projects/container/88107-propertyplaceholderhelper-bug
- [逻辑与拓扑]布尔逻辑与拓扑结构的结合会产生什么?
comsci
拓扑
如果我们已经在一个工作流的节点中嵌入了可以进行逻辑推理的代码,那么成百上千个这样的节点如果组成一个拓扑网络,而这个网络是可以自动遍历的,非线性的拓扑计算模型和节点内部的布尔逻辑处理的结合,会产生什么样的结果呢?
是否可以形成一种新的模糊语言识别和处理模型呢? 大家有兴趣可以试试,用软件搞这些有个好处,就是花钱比较少,就算不成
- ITEYE 都换百度推广了
cuisuqiang
GoogleAdSense百度推广广告外快
以前ITEYE的广告都是谷歌的Google AdSense,现在都换成百度推广了。
为什么个人博客设置里面还是Google AdSense呢?
都知道Google AdSense不好申请,这在ITEYE上也不是讨论了一两天了,强烈建议ITEYE换掉Google AdSense。至少,用一个好申请的吧。
什么时候能从ITEYE上来点外快,哪怕少点
- 新浪微博技术架构分析
dalan_123
新浪微博架构
新浪微博在短短一年时间内从零发展到五千万用户,我们的基层架构也发展了几个版本。第一版就是是非常快的,我们可以非常快的实现我们的模块。我们看一下技术特点,微博这个产品从架构上来分析,它需要解决的是发表和订阅的问题。我们第一版采用的是推的消息模式,假如说我们一个明星用户他有10万个粉丝,那就是说用户发表一条微博的时候,我们把这个微博消息攒成10万份,这样就是很简单了,第一版的架构实际上就是这两行字。第
- 玩转ARP攻击
dcj3sjt126com
r
我写这片文章只是想让你明白深刻理解某一协议的好处。高手免看。如果有人利用这片文章所做的一切事情,盖不负责。 网上关于ARP的资料已经很多了,就不用我都说了。 用某一位高手的话来说,“我们能做的事情很多,唯一受限制的是我们的创造力和想象力”。 ARP也是如此。 以下讨论的机子有 一个要攻击的机子:10.5.4.178 硬件地址:52:54:4C:98
- PHP编码规范
dcj3sjt126com
编码规范
一、文件格式
1. 对于只含有 php 代码的文件,我们将在文件结尾处忽略掉 "?>" 。这是为了防止多余的空格或者其它字符影响到代码。例如:<?php$foo = 'foo';2. 缩进应该能够反映出代码的逻辑结果,尽量使用四个空格,禁止使用制表符TAB,因为这样能够保证有跨客户端编程器软件的灵活性。例
- linux 脱机管理(nohup)
eksliang
linux nohupnohup
脱机管理 nohup
转载请出自出处:http://eksliang.iteye.com/blog/2166699
nohup可以让你在脱机或者注销系统后,还能够让工作继续进行。他的语法如下
nohup [命令与参数] --在终端机前台工作
nohup [命令与参数] & --在终端机后台工作
但是这个命令需要注意的是,nohup并不支持bash的内置命令,所
- BusinessObjects Enterprise Java SDK
greemranqq
javaBOSAPCrystal Reports
最近项目用到oracle_ADF 从SAP/BO 上调用 水晶报表,资料比较少,我做一个简单的分享,给和我一样的新手 提供更多的便利。
首先,我是尝试用JAVA JSP 去访问的。
官方API:http://devlibrary.businessobjects.com/BusinessObjectsxi/en/en/BOE_SDK/boesdk_ja
- 系统负载剧变下的管控策略
iamzhongyong
高并发
假如目前的系统有100台机器,能够支撑每天1亿的点击量(这个就简单比喻一下),然后系统流量剧变了要,我如何应对,系统有那些策略可以处理,这里总结了一下之前的一些做法。
1、水平扩展
这个最容易理解,加机器,这样的话对于系统刚刚开始的伸缩性设计要求比较高,能够非常灵活的添加机器,来应对流量的变化。
2、系统分组
假如系统服务的业务不同,有优先级高的,有优先级低的,那就让不同的业务调用提前分组
- BitTorrent DHT 协议中文翻译
justjavac
bit
前言
做了一个磁力链接和BT种子的搜索引擎 {Magnet & Torrent},因此把 DHT 协议重新看了一遍。
BEP: 5Title: DHT ProtocolVersion: 3dec52cb3ae103ce22358e3894b31cad47a6f22bLast-Modified: Tue Apr 2 16:51:45 2013 -070
- Ubuntu下Java环境的搭建
macroli
java工作ubuntu
配置命令:
$sudo apt-get install ubuntu-restricted-extras
再运行如下命令:
$sudo apt-get install sun-java6-jdk
待安装完毕后选择默认Java.
$sudo update- alternatives --config java
安装过程提示选择,输入“2”即可,然后按回车键确定。
- js字符串转日期(兼容IE所有版本)
qiaolevip
TODateStringIE
/**
* 字符串转时间(yyyy-MM-dd HH:mm:ss)
* result (分钟)
*/
stringToDate : function(fDate){
var fullDate = fDate.split(" ")[0].split("-");
var fullTime = fDate.split("
- 【数据挖掘学习】关联规则算法Apriori的学习与SQL简单实现购物篮分析
superlxw1234
sql数据挖掘关联规则
关联规则挖掘用于寻找给定数据集中项之间的有趣的关联或相关关系。
关联规则揭示了数据项间的未知的依赖关系,根据所挖掘的关联关系,可以从一个数据对象的信息来推断另一个数据对象的信息。
例如购物篮分析。牛奶 ⇒ 面包 [支持度:3%,置信度:40%] 支持度3%:意味3%顾客同时购买牛奶和面包。 置信度40%:意味购买牛奶的顾客40%也购买面包。 规则的支持度和置信度是两个规则兴
- Spring 5.0 的系统需求,期待你的反馈
wiselyman
spring
Spring 5.0将在2016年发布。Spring5.0将支持JDK 9。
Spring 5.0的特性计划还在工作中,请保持关注,所以作者希望从使用者得到关于Spring 5.0系统需求方面的反馈。