- AI人工智能中的概率论与统计学原理与Python实战:Python实现概率模型
AI天才研究院
AI实战AI大模型企业级应用开发实战大数据人工智能语言模型AILLMJavaPython架构设计AgentRPA
1.背景介绍随着人工智能技术的不断发展,概率论与统计学在人工智能领域的应用越来越广泛。概率论与统计学是人工智能中的基础知识之一,它们在机器学习、深度学习、自然语言处理等领域都有着重要的作用。本文将介绍概率论与统计学的核心概念、算法原理、具体操作步骤以及Python实现方法,并通过具体代码实例进行详细解释。2.核心概念与联系2.1概率论与统计学的区别概率论是一门数学学科,它研究随机事件发生的可能性。
- C/C++中左值引用,右值引用,万能引用的关系和区别
东北豆子哥
C++c语言c++
在C++中,左值引用、右值引用和万能引用是三种不同的引用类型,它们的主要区别在于绑定的对象类型和生命周期管理。以下是它们的详细解释和示例代码。1.左值引用(LvalueReference)左值引用绑定到一个左值(即有名字的、可以取地址的对象)。左值引用通常用于传递参数或延长对象的生命周期。#includevoidprint(int&x){std::coutvoidprint(int&&x){std
- 蓝桥杯网络安全春秋赛 Crypto RSA
叁Three
蓝桥杯密码学
蓝桥杯网络安全春秋赛CryptoRSA题目某公司为了保护其重要数据,使用了RSA加密算法。该公司以同一个N为模数,为Alice和Bob分别生成了不同的公钥和与之相应的私钥。Alice和Bob都使用自己的公钥对同一条明文m进行加密,分别得到密文c1和c2。假设你是一名密码安全研究者,你已获取了N值、两个密文和公钥,能否使用RSA的相关知识还原出明文m呢?#!python3.9fromCrypto.U
- 基于内容分块(CDC)的重删算法详解:原理、实现与优化
这个懒人
算法
引言在数据爆炸式增长的时代,存储资源优化成为技术领域的重要课题。重复数据删除(Deduplication)技术通过消除冗余数据副本,可将存储需求降低90%以上。其中基于内容分块(Content-DefinedChunking,CDC)算法凭借其对数据局部修改的强适应性,成为企业级备份系统、云存储服务的核心技术。一、CDC算法核心原理1.1动态分块vs静态分块传统固定分块算法将数据按固定大小(如4K
- 算法-找到字符串中所有字母异位词
程序员南飞
算法数据结构开发语言java
力扣题目:438.找到字符串中所有字母异位词-力扣(LeetCode)题目描述:给定两个字符串s和p,找到s中所有p的异位词的子串,返回这些子串的起始索引。不考虑答案输出的顺序。示例1:输入:s="cbaebabacd",p="abc"输出:[0,6]解释:起始索引等于0的子串是"cba",它是"abc"的异位词。起始索引等于6的子串是"bac",它是"abc"的异位词。示例2:输入:s="aba
- 【面试经验】华为 AI软开 计算产品线(面经+时间线)
litterfinger
面试华为人工智能
一.岗位:AI软开二.时间线:投递08.09,机试08.28,测评08.29;面试均线上,一面09.12,二面09.27,三面09.29(本来是09.19线下二三面,但由于本人有事推迟)三.一面(50min)自我介绍简单介绍一下传统知识图谱建设和大模型对于知识的构建的差异和整体的趋势聊聊实习经历中的提示工程和sft具体的工作AI的一个发展历史流程和相关算法的引进知识图谱建设的总体流程回顾机试:老鼠
- 【北上广深杭大厂AI算法面试题】计算机视觉篇...详解目标检测中的多尺度训练和测试?
努力毕业的小土博^_^
AI算法题库人工智能计算机视觉算法深度学习神经网络目标检测
【北上广深杭大厂AI算法面试题】计算机视觉篇…详解目标检测中的多尺度训练和测试?【北上广深杭大厂AI算法面试题】计算机视觉篇…详解目标检测中的多尺度训练和测试?文章目录【北上广深杭大厂AI算法面试题】计算机视觉篇...详解目标检测中的多尺度训练和测试?前言多尺度训练核心思想:优点与注意点:多尺度测试核心思想:优点与注意点:综合作用参考示例总结欢迎铁子们点赞、关注、收藏!祝大家逢考必过!逢投必中!上
- MVC/MVP/MVVM框架学习总结(二)
每次的天空
mvc学习java
上次已经了解到MVC的知识,现在是扩展实现MVP/MVVM的框架改进本身项目MVVM框架即Model-View-ViewModel框架,是一种软件架构设计模式,以下是具体介绍:核心组件Model(模型):代表应用程序的数据结构和业务逻辑,负责数据的存储、检索、验证和处理,定义业务规则和算法,是应用程序的数据核心。比如在一个电商应用中,商品数据、用户订单数据等的存储和相关逻辑处理都属于Model层。
- 【时间复杂度常见的计算】
xihongshi547
算法leetcode数据结构
提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档时间复杂度的简单介绍前言一、时间复杂度是什么?二、时间复杂度的计算1.基本步骤2.常见的时间复杂度总结前言对于判断一段代码的好坏,取决于该代码运行的时间与占用的空间,也就是时间复杂度与空间复杂度,本章就先讲一下时间复杂度,主要包含常见的时间复杂度的计算。一、时间复杂度是什么?时间复杂度是衡量算法运行效率的一个重要指标,它表示随着输入规
- 为什么转行大模型行业?深度解析职业变革与技术红利
大模型入门教程
大模型学习语言模型人工智能AI大模型程序员大模型入门
引言2023年ChatGPT的爆发式发展,标志着AI大模型技术正式进入大众视野。这一技术不仅重塑了人工智能的边界,更催生了全新的职业赛道。从传统算法工程师到互联网从业者,越来越多的人开始将目光投向大模型领域。本文将深入探讨这一现象背后的核心动因,并结合行业现状、技术趋势与职业发展路径,为从业者提供系统性分析。一、行业变革:传统岗位萎缩与大模型崛起传统技术岗位的困境以推荐算法为例,随着移动互联网流量
- 算法学习之路——贪心算法
蒋楠鑫
算法算法贪心算法
文章目录一、前言二、什么是算法三、什么是贪心算法1.含义2.基本思路3.适用场景四、代码实现五、经典例题分析六、总结一、前言先来看一道简单的数学问题:小明有30元钱,每瓶酒要5元钱,每3个空瓶子可以换1瓶酒,请问小明最多可以喝到多少瓶酒?这道题目显然是一道求最优解的问题,由于数据量小我们可以用最简单最直接的枚举法来解决,但是如果将题目泛化一下呢:小明现在购买了m瓶酒,每n个空瓶子可以换1瓶酒,请问
- 五大基础算法——模拟算法
六七_Shmily
数据结构与算法分析算法
模拟算法是一种通过直接模拟问题描述的过程或规则来解决问题的算法思想。它通常用于解决那些问题描述清晰、步骤明确、可以直接按照规则逐步实现的问题。以下是模拟算法的核心概念、适用场景、实现方法及经典例题:一、核心概念问题描述清晰问题的规则和步骤明确,可以直接按照描述实现。逐步模拟按照问题的规则,一步一步模拟过程,直到得到最终结果。无复杂优化模拟算法通常不涉及复杂的优化技巧,重点是准确实现问题描述。二、适
- C++闪电侠:快速幂算法终极指南
三流搬砖艺术家
算法算法深度优先c++
目录快速幂核心思想快速幂模板代码快速幂取模模板(大数必备)实战演练(LeetCode真题)快速幂核心思想二进制分解+分治思想:a^13=a^(8+4+1)=a^8*a^4*a^1通过不断平方分解指数:a→a²→a⁴→a⁸→...动态演示:指数b=13的二进制:1101计算路径:a^1→(a^1)²→a^2→(a^2)²→a^4→(a^4)²→a^8最终结果=a^8*a^4*a^1快速幂模板代码ll
- IDEA Reformat Code 避免将多行参数或多行方法链调用合并成一行
阿湯哥
intellij-ideajavaide
在IntelliJIDEA中,如果你希望在进行代码格式化(ReformatCode)时,避免将多行参数或多行方法链调用合并成一行,可以通过以下步骤进行设置:1.打开设置在IntelliJIDEA中,点击File菜单,然后选择Settings(Windows/Linux)或Preferences(macOS)。2.进入代码格式化设置在设置窗口中,导航到Editor->CodeStyle->Java(
- 云原生:K8s(Kubernetes)高频典型面试题汇总
老舅的火箭爱扫地
云原生kubernetes容器
1.简述etcd及其特点?答:etcd是CoreOS团队发起的开源项目,是一个管理配置信息和服务发现(servicediscovery)的项目,它的目标是构建一个高可用的分布式键值(key-value)数据库,基于Go语言实现。特点:l简单:支持REST风格的HTTP+JSONAPIl安全:支持HTTPS方式的访问l快速:支持并发1k/s的写操作l可靠:支持分布式结构,基于Raft的一致性算法,R
- 【第14届蓝桥杯】软件赛CB组省赛
Guiat
算法竞赛真题题解蓝桥杯
个人主页:Guiat归属专栏:算法竞赛真题题解文章目录A.日期统计B.01串的熵C.冶炼金属D.飞机降落E.接龙数列F.岛屿个数G.子串简写H.整数删除I.景区导游J.砍树正文总共10道题。A.日期统计【题目】日期统计【分析】【答案】235【AC_Code】#include#defineIOSios::sync_with_stdio(0);cin.tie(0);cout.tie(0);usingn
- Python自动化炒股:利用XGBoost和LightGBM进行股票市场预测的实战案例
云策量化
Python自动化炒股量化投资量化软件python量化交易QMTPTrade量化炒股量化投资deepseek
推荐阅读:《程序化炒股:如何申请官方交易接口权限?个人账户可以申请吗?》Python自动化炒股:利用XGBoost和LightGBM进行股票市场预测的实战案例在当今快节奏的金融市场中,自动化交易和预测模型成为了投资者和交易者的重要工具。Python以其强大的数据处理能力和丰富的机器学习库,成为了实现这些模型的首选语言。本文将带你了解如何使用XGBoost和LightGBM这两个流行的机器学习算法来
- 企业级通配符 SSL 证书:企业网络安全的坚实护盾
ssl证书
一、什么是企业级通配符SSL证书企业级通配符SSL证书,是一种数字证书,它就像是企业在网络世界的“身份证”。与普通证书不同,其最大亮点在于一个证书能保护一个主域名及其下所有的子域名。这极大地简化了证书管理流程,企业无需为每个子域名单独申请和配置证书,一站式搞定网络加密需求。二、强大的加密保障在网络数据传输如水流般穿梭的时代,信息安全至关重要。企业级通配符SSL证书采用先进加密算法,将数据加密打包后
- 深度合成算法备案十大雷区拆解
AI产品备案
人工智能算法语言模型ai
最近后台收到了很多小伙伴的私信,基本上都是在问算法备案被打回了;哪部分的材料有什么问题;不清楚驳回原因等等。今天结合大家最关心的问题,为大家详细剖析一下备案过程中常见的十大难题及解决方法。一、备案主体性质界定不明不少企业在备案过程中往往难以明确自身是否属于备案主体范围,尤其是涉及技术提供与应用服务的交叉领域,无法判断自身是否属于“具有舆论属性或者社会动员能力”主体。解决方案:仔细研读相关政策法规,
- 【sklearn 04】DNN、CNN、RNN
@金色海岸
sklearndnncnn
DNNDNN(DeepNeuralNetworks,深度神经网络)是一种相对浅层机器学习模型具有更多参数,需要更多数据进行训练的机器学习算法CNNCNN(convolutionalNeuralNetworks,卷积神经网络)是一种从局部特征开始学习并逐渐整合的神经网络。卷积神经网络通过卷积层来进行特征提取,通过池化层进行降维,相比较全连接的神经网络,卷积神经网络降低了模型复杂度,减少了模型的参数,
- 漫画算法python篇pdf_用Python抓取漫画并制作mobi格式电子书
jian bao
漫画算法python篇pdf
想看某一部漫画,但是用手机看感觉屏幕太小,用电脑看吧有太不方面。正好有一部Kindle,决定写一个爬虫把漫画爬取下来,然后制作成mobi格式的电子书放到kindle里面看。本人对于Python学习创建了一个小小的学习圈子,为各位提供了一个平台,大家一起来讨论学习Python。欢迎各位到来Python学习群:943752371一起讨论视频分享学习。Python是未来的发展方向,正在挑战我们的分析能力
- 02、数据结构与算法 - 基础:数组 - 吊打面试官
星星学霸
数据结构与算法-吊打面试官python开发语言java算法数据结构
更多系列教程,每天更新更多教程关注:xxxueba.com星星学霸本篇博客我们介绍数据结构的鼻祖------数组,可以说数组几乎能表示一切的数据结构,在每一门编程语言中,数组都是重要的数据结构,当然每种语言对数组的实现和处理也不相同,但是本质是都是用来存放数据的的结构,这里我们以Java语言为例,来详细介绍Java语言中数组的用法。Java中数组的介绍在Java中,数组是用来存放同一种数据类型的集
- Vue 3 vs Vue 2:深入解析从性能优化到源码层面的进化
银之夏雪
vue.js性能优化前端
Vue.js是当今前端开发中最受欢迎的框架之一。随着Vue3的发布,它在性能优化、开发体验、响应式系统、构建工具和热更新等多个方面都带来了巨大提升。本文将深入剖析Vue3的进化,包括其源码实现方面的优化,如diff算法、静态标记、编译优化,以及Vue3在热更新、构建工具上的改进。1.性能提升:底层优化的革命1.1响应式系统的改进:从Object.defineProperty到ProxyVue2的响
- Java代码优化提升系统性能
种豆走天下
java开发语言
优化可以涉及许多方面,例如算法优化、内存管理、线程管理、I/O性能等。以下是一些常见的优化建议和技巧:1.优化算法和数据结构选择合适的算法:优化性能的首要步骤是选择正确的算法。例如,使用二分查找代替线性查找,或者使用合适的排序算法来替代简单的冒泡排序。选择合适的数据结构:数据结构的选择对系统的性能有很大影响。例如,如果需要频繁的插入和删除操作,使用LinkedList而不是ArrayList可能会
- selenium 等待ajax,如何等待Selenium IDE中的所有ajax请求完成?
华西怀
selenium等待ajax
我有一阵子没用过IDE。这是我用于WebDriver的。但算法翻译;JavaScript是JavaScript。这就是说,这取决于你的框架。对于角度,我用这个:publicbooleanwaitForAngularToLoad(WebDriverdriver,intwaitTimeInSeconds){WebDriverWaitwait=newWebDriverWait(driver,waitTi
- 【从零开始学习计算机科学】数字逻辑(四)数字系统设计
贫苦游商
学习数字逻辑verilog数字系统HDL数字电路FPGA
【从零开始学习计算机科学】数字逻辑(四)数字系统设计数字系统设计硬件描述语言HDL(HardwareDescriptionLanguage)VerilogHDL的起源与发展HDL软核、固核和硬核的重用HDL的应用数字系统设计实现数字系统设计一个数字集成电路的可以从不同的层次(系统级、算法级、寄存器传输级、门级、开关级)以及不同的领域(行为领域、结构领域、物理领域)进行描述。三个领域主要含义如下:行
- 新手村:数据预处理-特征缩放
嘉羽很烦
机器学习线性回归算法机器学习
新手村:数据预处理-特征缩放特征缩放(FeatureScaling)是数据预处理中的一个重要步骤,特别是在应用某些机器学习算法时。特征缩放可以使不同尺度的特征具有相同的量级,从而提高模型训练的效率和性能。常见的特征缩放方法包括标准化(Standardization)和归一化(Normalization)。常见的特征缩放方法标准化(Standardization)将特征转换为均值为0,标准差为1的标
- 遗传算法与深度学习实战(2)——生命模拟及其应用
盼小辉丶
遗传算法与深度学习实战深度学习人工智能遗传算法
遗传算法与深度学习实战(2)——生命模拟及其应用0.前言1.康威生命游戏1.1康威生命游戏的规则1.2实现康威生命游戏1.3空间生命和智能体模拟2.实现生命模拟3.生命模拟应用小结系列链接0.前言生命模拟是进化计算的一个特定子集,模拟了自然界中所观察到的自然过程,例如粒子或鸟群的聚集方式。生命模拟只是用来探索和优化问题的模拟形式之一,还有很多其他形式的模拟,可以更好地建模各种过程,但它们都源于康威
- 支持向量机 (SVM) 算法详解
sssugarr
机器学习算法详解pythonsvm支持向量机算法sklearn
支持向量机(SVM)算法详解支持向量机(SupportVectorMachine,SVM)是一种监督学习模型,广泛应用于分类和回归分析。SVM特别适合高维数据,并且在处理复杂非线性数据时表现出色。本文将详细讲解SVM的原理、数学公式、应用场景及其在Python中的实现。什么是支持向量机?支持向量机的目标是找到一个最佳的决策边界(或称超平面)来最大限度地分隔不同类别的数据点。对于线性可分的数据,SV
- 【算法手记04】回溯算法
Xeno Li
算法java
回溯是递归的副产品,只要有递归,就会有对应的回溯过程。回溯实际上就是“撤销上一次递归操作”的一个过程。回溯法是由递归+循环组成的,其中每次循环执行的次数应该是可知的。每一次完成递归都会收集一次可能的结果,因此结果集的大小是不确定的,需要使用递归去找,我们称之为纵向搜索;而每次循环会从待找集合中依次遍历,是一个横向搜索的过程。模板voidbacktracking(参数){if(终止条件){收集结果r
- tomcat基础与部署发布
暗黑小菠萝
Tomcat java web
从51cto搬家了,以后会更新在这里方便自己查看。
做项目一直用tomcat,都是配置到eclipse中使用,这几天有时间整理一下使用心得,有一些自己配置遇到的细节问题。
Tomcat:一个Servlets和JSP页面的容器,以提供网站服务。
一、Tomcat安装
安装方式:①运行.exe安装包
&n
- 网站架构发展的过程
ayaoxinchao
数据库应用服务器网站架构
1.初始阶段网站架构:应用程序、数据库、文件等资源在同一个服务器上
2.应用服务和数据服务分离:应用服务器、数据库服务器、文件服务器
3.使用缓存改善网站性能:为应用服务器提供本地缓存,但受限于应用服务器的内存容量,可以使用专门的缓存服务器,提供分布式缓存服务器架构
4.使用应用服务器集群改善网站的并发处理能力:使用负载均衡调度服务器,将来自客户端浏览器的访问请求分发到应用服务器集群中的任何
- [信息与安全]数据库的备份问题
comsci
数据库
如果你们建设的信息系统是采用中心-分支的模式,那么这里有一个问题
如果你的数据来自中心数据库,那么中心数据库如果出现故障,你的分支机构的数据如何保证安全呢?
是否应该在这种信息系统结构的基础上进行改造,容许分支机构的信息系统也备份一个中心数据库的文件呢?
&n
- 使用maven tomcat plugin插件debug关联源代码
商人shang
mavendebug查看源码tomcat-plugin
*首先需要配置好'''maven-tomcat7-plugin''',参见[[Maven开发Web项目]]的'''Tomcat'''部分。
*配置好后,在[[Eclipse]]中打开'''Debug Configurations'''界面,在'''Maven Build'''项下新建当前工程的调试。在'''Main'''选项卡中点击'''Browse Workspace...'''选择需要开发的
- 大访问量高并发
oloz
大访问量高并发
大访问量高并发的网站主要压力还是在于数据库的操作上,尽量避免频繁的请求数据库。下面简
要列出几点解决方案:
01、优化你的代码和查询语句,合理使用索引
02、使用缓存技术例如memcache、ecache将不经常变化的数据放入缓存之中
03、采用服务器集群、负载均衡分担大访问量高并发压力
04、数据读写分离
05、合理选用框架,合理架构(推荐分布式架构)。
- cache 服务器
小猪猪08
cache
Cache 即高速缓存.那么cache是怎么样提高系统性能与运行速度呢?是不是在任何情况下用cache都能提高性能?是不是cache用的越多就越好呢?我在近期开发的项目中有所体会,写下来当作总结也希望能跟大家一起探讨探讨,有错误的地方希望大家批评指正。
1.Cache 是怎么样工作的?
Cache 是分配在服务器上
- mysql存储过程
香水浓
mysql
Description:插入大量测试数据
use xmpl;
drop procedure if exists mockup_test_data_sp;
create procedure mockup_test_data_sp(
in number_of_records int
)
begin
declare cnt int;
declare name varch
- CSS的class、id、css文件名的常用命名规则
agevs
JavaScriptUI框架Ajaxcss
CSS的class、id、css文件名的常用命名规则
(一)常用的CSS命名规则
头:header
内容:content/container
尾:footer
导航:nav
侧栏:sidebar
栏目:column
页面外围控制整体布局宽度:wrapper
左右中:left right
- 全局数据源
AILIKES
javatomcatmysqljdbcJNDI
实验目的:为了研究两个项目同时访问一个全局数据源的时候是创建了一个数据源对象,还是创建了两个数据源对象。
1:将diuid和mysql驱动包(druid-1.0.2.jar和mysql-connector-java-5.1.15.jar)copy至%TOMCAT_HOME%/lib下;2:配置数据源,将JNDI在%TOMCAT_HOME%/conf/context.xml中配置好,格式如下:&l
- MYSQL的随机查询的实现方法
baalwolf
mysql
MYSQL的随机抽取实现方法。举个例子,要从tablename表中随机提取一条记录,大家一般的写法就是:SELECT * FROM tablename ORDER BY RAND() LIMIT 1。但是,后来我查了一下MYSQL的官方手册,里面针对RAND()的提示大概意思就是,在ORDER BY从句里面不能使用RAND()函数,因为这样会导致数据列被多次扫描。但是在MYSQL 3.23版本中,
- JAVA的getBytes()方法
bijian1013
javaeclipseunixOS
在Java中,String的getBytes()方法是得到一个操作系统默认的编码格式的字节数组。这个表示在不同OS下,返回的东西不一样!
String.getBytes(String decode)方法会根据指定的decode编码返回某字符串在该编码下的byte数组表示,如:
byte[] b_gbk = "
- AngularJS中操作Cookies
bijian1013
JavaScriptAngularJSCookies
如果你的应用足够大、足够复杂,那么你很快就会遇到这样一咱种情况:你需要在客户端存储一些状态信息,这些状态信息是跨session(会话)的。你可能还记得利用document.cookie接口直接操作纯文本cookie的痛苦经历。
幸运的是,这种方式已经一去不复返了,在所有现代浏览器中几乎
- [Maven学习笔记五]Maven聚合和继承特性
bit1129
maven
Maven聚合
在实际的项目中,一个项目通常会划分为多个模块,为了说明问题,以用户登陆这个小web应用为例。通常一个web应用分为三个模块:
1. 模型和数据持久化层user-core,
2. 业务逻辑层user-service以
3. web展现层user-web,
user-service依赖于user-core
user-web依赖于user-core和use
- 【JVM七】JVM知识点总结
bit1129
jvm
1. JVM运行模式
1.1 JVM运行时分为-server和-client两种模式,在32位机器上只有client模式的JVM。通常,64位的JVM默认都是使用server模式,因为server模式的JVM虽然启动慢点,但是,在运行过程,JVM会尽可能的进行优化
1.2 JVM分为三种字节码解释执行方式:mixed mode, interpret mode以及compiler
- linux下查看nginx、apache、mysql、php的编译参数
ronin47
在linux平台下的应用,最流行的莫过于nginx、apache、mysql、php几个。而这几个常用的应用,在手工编译完以后,在其他一些情况下(如:新增模块),往往想要查看当初都使用了那些参数进行的编译。这时候就可以利用以下方法查看。
1、nginx
[root@361way ~]# /App/nginx/sbin/nginx -V
nginx: nginx version: nginx/
- unity中运用Resources.Load的方法?
brotherlamp
unity视频unity资料unity自学unityunity教程
问:unity中运用Resources.Load的方法?
答:Resources.Load是unity本地动态加载资本所用的方法,也即是你想动态加载的时分才用到它,比方枪弹,特效,某些实时替换的图像什么的,主张此文件夹不要放太多东西,在打包的时分,它会独自把里边的一切东西都会集打包到一同,不论里边有没有你用的东西,所以大多数资本应该是自个建文件放置
1、unity实时替换的物体即是依据环境条件
- 线段树-入门
bylijinnan
java算法线段树
/**
* 线段树入门
* 问题:已知线段[2,5] [4,6] [0,7];求点2,4,7分别出现了多少次
* 以下代码建立的线段树用链表来保存,且树的叶子结点类似[i,i]
*
* 参考链接:http://hi.baidu.com/semluhiigubbqvq/item/be736a33a8864789f4e4ad18
* @author lijinna
- 全选与反选
chicony
全选
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">
<html>
<head>
<title>全选与反选</title>
- vim一些简单记录
chenchao051
vim
mac在/usr/share/vim/vimrc linux在/etc/vimrc
1、问:后退键不能删除数据,不能往后退怎么办?
答:在vimrc中加入set backspace=2
2、问:如何控制tab键的缩进?
答:在vimrc中加入set tabstop=4 (任何
- Sublime Text 快捷键
daizj
快捷键sublime
[size=large][/size]Sublime Text快捷键:Ctrl+Shift+P:打开命令面板Ctrl+P:搜索项目中的文件Ctrl+G:跳转到第几行Ctrl+W:关闭当前打开文件Ctrl+Shift+W:关闭所有打开文件Ctrl+Shift+V:粘贴并格式化Ctrl+D:选择单词,重复可增加选择下一个相同的单词Ctrl+L:选择行,重复可依次增加选择下一行Ctrl+Shift+L:
- php 引用(&)详解
dcj3sjt126com
PHP
在PHP 中引用的意思是:不同的名字访问同一个变量内容. 与C语言中的指针是有差别的.C语言中的指针里面存储的是变量的内容在内存中存放的地址 变量的引用 PHP 的引用允许你用两个变量来指向同一个内容 复制代码代码如下:
<?
$a="ABC";
$b =&$a;
echo
- SVN中trunk,branches,tags用法详解
dcj3sjt126com
SVN
Subversion有一个很标准的目录结构,是这样的。比如项目是proj,svn地址为svn://proj/,那么标准的svn布局是svn://proj/|+-trunk+-branches+-tags这是一个标准的布局,trunk为主开发目录,branches为分支开发目录,tags为tag存档目录(不允许修改)。但是具体这几个目录应该如何使用,svn并没有明确的规范,更多的还是用户自己的习惯。
- 对软件设计的思考
e200702084
设计模式数据结构算法ssh活动
软件设计的宏观与微观
软件开发是一种高智商的开发活动。一个优秀的软件设计人员不仅要从宏观上把握软件之间的开发,也要从微观上把握软件之间的开发。宏观上,可以应用面向对象设计,采用流行的SSH架构,采用web层,业务逻辑层,持久层分层架构。采用设计模式提供系统的健壮性和可维护性。微观上,对于一个类,甚至方法的调用,从计算机的角度模拟程序的运行情况。了解内存分配,参数传
- 同步、异步、阻塞、非阻塞
geeksun
非阻塞
同步、异步、阻塞、非阻塞这几个概念有时有点混淆,在此文试图解释一下。
同步:发出方法调用后,当没有返回结果,当前线程会一直在等待(阻塞)状态。
场景:打电话,营业厅窗口办业务、B/S架构的http请求-响应模式。
异步:方法调用后不立即返回结果,调用结果通过状态、通知或回调通知方法调用者或接收者。异步方法调用后,当前线程不会阻塞,会继续执行其他任务。
实现:
- Reverse SSH Tunnel 反向打洞實錄
hongtoushizi
ssh
實際的操作步驟:
# 首先,在客戶那理的機器下指令連回我們自己的 Server,並設定自己 Server 上的 12345 port 會對應到幾器上的 SSH port
ssh -NfR 12345:localhost:22
[email protected]
# 然後在 myhost 的機器上連自己的 12345 port,就可以連回在客戶那的機器
ssh localhost -p 1
- Hibernate中的缓存
Josh_Persistence
一级缓存Hiberante缓存查询缓存二级缓存
Hibernate中的缓存
一、Hiberante中常见的三大缓存:一级缓存,二级缓存和查询缓存。
Hibernate中提供了两级Cache,第一级别的缓存是Session级别的缓存,它是属于事务范围的缓存。这一级别的缓存是由hibernate管理的,一般情况下无需进行干预;第二级别的缓存是SessionFactory级别的缓存,它是属于进程范围或群集范围的缓存。这一级别的缓存
- 对象关系行为模式之延迟加载
home198979
PHP架构延迟加载
形象化设计模式实战 HELLO!架构
一、概念
Lazy Load:一个对象,它虽然不包含所需要的所有数据,但是知道怎么获取这些数据。
延迟加载貌似很简单,就是在数据需要时再从数据库获取,减少数据库的消耗。但这其中还是有不少技巧的。
二、实现延迟加载
实现Lazy Load主要有四种方法:延迟初始化、虚
- xml 验证
pengfeicao521
xmlxml解析
有些字符,xml不能识别,用jdom或者dom4j解析的时候就报错
public static void testPattern() {
// 含有非法字符的串
String str = "Jamey친ÑԂ
- div设置半透明效果
spjich
css半透明
为div设置如下样式:
div{filter:alpha(Opacity=80);-moz-opacity:0.5;opacity: 0.5;}
说明:
1、filter:对win IE设置半透明滤镜效果,filter:alpha(Opacity=80)代表该对象80%半透明,火狐浏览器不认2、-moz-opaci
- 你真的了解单例模式么?
w574240966
java单例设计模式jvm
单例模式,很多初学者认为单例模式很简单,并且认为自己已经掌握了这种设计模式。但事实上,你真的了解单例模式了么。
一,单例模式的5中写法。(回字的四种写法,哈哈。)
1,懒汉式
(1)线程不安全的懒汉式
public cla