我删除了无关代码,只放出错的部分
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
train_iter = Data.DataLoader(train_dataset, batch_size=batch_size, shuffle=True, drop_last=True)
model = RNNSa(300, 2).to(device)
print('\nmodel.parameters().device:', next(model.parameters()).device)
for epoch in range(num_epochs):
for X, y in train_iter:
X = X.to(device)
y = y.to(device)
print('train X device:', X.device)
print('train y device:', y.device)
整个代码就是我将数据打包到DataLoader()
中;接着声明了一个模型的实例化对象,并放到GPU
上;然后从DataLoader()
中提取X
与y
,并将这两个放到GPU
上。逻辑上没有问题,但是却报错:
RuntimeError: Input and parameter tensors are not at the same device, found input tensor at cpu and parameter tensor at cuda:0
打印信息为:
next(model.parameters()).device: cuda:0
train X device: cpu
train y device: cpu
具体为什么出错我也不是特别清楚,但是由于我们服务器上有两张卡,所以极有可能是model
先占用了cuda:0
这张卡后,X
与y
找不到放哪个卡上导致没有放到GPU
上。
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
train_iter = Data.DataLoader(train_dataset, batch_size=batch_size, shuffle=True, drop_last=True)
model = RNNSa(300, 2).to(device)
cuda = next(model.parameters()).device
print('\nmodel.parameters().device:', next(model.parameters()).device)
for epoch in range(num_epochs):
for X, y in train_iter:
X = X.to(cuda)
y = y.to(cuda)
print('train X device:', X.device)
print('train y device:', y.device)
先将model
丢上GPU
,接着获取存储model
的device
,然后将X
与y
放到这个device
上即可解决:
model.parameters().device: cuda:0
train X device: cuda:0
train y device: cuda:0