- r语言 面板数据回归_R语言 之回归分析
你的麦克疯
r语言面板数据回归
回归分析(regressionanalysis)是确定两种或两种以上变量间相互依赖的定量关系的一种统计分析方法。运用十分广泛,下列表格向我们展示了回归的不同类型以及其用途。本章为R语言回归分析之上部分,主要向读者们展示如何运用R语言完成ols(普通最小二乘)回归:简单线性回归、多项式回归、多元线性回归的语言编程示例,以及检验回归分析中统计假设的方法。回归类型用途简单线性用一个量化的解释变量来预测一
- 【CUDA】Pytorch_Extensions
joker D888
深度学习pytorchpythoncudac++深度学习
【CUDA】Pytorch_Extensions为什么要开发CUDA扩展?当我们在PyTorch中实现自定义算子时,通常有两种选择:使用纯Python实现(简单但效率低)使用C++/CUDA扩展(高效但需要编译)对于计算密集型的操作(如神经网络中的自定义激活函数),使用CUDA扩展可以获得接近硬件极限的性能。本文将以实现一个多项式激活函数x²+x+1为例,展示完整的开发流程。完整CUDA扩展代码解
- Winograd 算法原理推导和python程序
weixin_47696437
算法python人工智能
一、算法背景Winograd算法是一种用于高效计算卷积的算法,其核心思想是通过减少乘法运算的次数来提高卷积计算的效率。在传统的卷积计算中,乘法运算的开销较大,而Winograd算法通过巧妙的变换,将卷积运算转化为在变换域中的矩阵乘法,从而减少乘法的数量,虽然会引入一些额外的加法和变换操作,但整体上在计算效率上有显著提升。二、一维卷积的Winograd推导2.Winograd优化通过多项式变换减少乘
- 编程小白冲Kaggle每日打卡(8)--kaggle学堂:<Python>列表
AZmax01
编程小白冲Kaggle每日打卡pythonwindows开发语言
Kaggle课程官方链接:Lists本专栏旨在Kaggle官方课程的汉化,让大家更方便地看懂。Lists¶列表以及你可以用它们做的事情。包括索引、切片和变异Python中的列表表示值的有序序列。以下是一个如何创建它们的示例:primes=[2,3,5,7]我们可以把其他类型的东西放在列表中:planets=['Mercury','Venus','Earth','Mars','Jupiter','S
- 后量子密码学:量子安全新防线
量子信使
量子计算密码学信息与通信深度学习安全算法机器学习
目录背景主要算法介绍基于格的密码学格的概念格密码学中的难题加密和解密过程基于多变量多项式的密码学多变量多项式基础多变量多项式密码学中的难题加密和签名过程基于编码的密码学纠错码简介编码密码学中的难题加密和解密过程安全性分析传统密码学算法在量子计算环境下的安全性RSA算法的破解风险椭圆曲线密码算法的脆弱性后量子密码学算法的安全性评估基于格的密码学算法基于多变量多项式的密码学算法基于编码的密码学算法后量
- 装备效能评估方法TOPSIS法(优劣解距离法)深度解析:原理、实现与行业应用案例
燃灯工作室
Aipython
一、方法概述1.1核心思想TOPSIS(TechniqueforOrderPreferencebySimilaritytoIdealSolution)通过计算各方案与正理想解(最优解)和负理想解(最劣解)的相对接近度进行排序。其核心原理可以用三维空间形象表示:距离距离距离距离方案1正理想解负理想解方案21.2方法特点适用性:适用于多目标决策、多方案优选优势:直观的几何解释,可处理不同量纲指标局限:
- 求解插值多项式及其余项表达式
F_D_Z
数理数值分析插值多项式
例求满足P(xj)=f(xj)P(x_j)=f(x_j)P(xj)=f(xj)(j=0,1,2j=0,1,2j=0,1,2)及P′(x1)=f′(x1)P'(x_1)=f'(x_1)P′(x1)=f′(x1)的插值多项式及其余项表达式。解:由给定条件,可确定次数不超过3的插值多项式。此多项式通过点(x0,f(x0)),(x1,f(x1))(x_0,f(x_0)),(x_1,f(x_1))(x0,f
- 量子计算机可以破解比特币吗
weixin_49526058
量子计算区块链智能合约信任链去中心化分布式账本web3
量子计算机可能会对当前的加密算法(包括比特币使用的椭圆曲线加密)带来极大的挑战,尤其是因为它能够使用Shor算法高效地解决离散对数问题。然而,具体到量子计算机破解比特币私钥的情况,需要从以下几个方面深入理解:1.Shor算法与离散对数问题Shor算法是由数学家彼得·肖(PeterShor)在1994年提出的一种量子算法,它可以在多项式时间内解决两类经典计算机难以处理的问题:整数分解问题:这涉及RS
- 拉格朗日插值
一条大祥脚
算法
你如果能确定一个问题答案一定是一个多项式形式,那么你可以先暴力求出来几个点的解,带入,把这个多项式的系数求出来,接下来给出自变量的话,你直接往这个式子里带入就能得到答案了。具体的原理就是oiwiki上的这个过程这里需要注意的是,对于一个最高次为k的多项式,至少需要k+1个不同的点才能确定全部系数。求系数的过程暴力是O(n2)O(n^2)O(n2)的,这要求我们多项式次数不能太大。不过对于连续的数据
- 可可泛基因组-文献精读112
让学习成为一种生活方式
生物信息学泛基因组基因组泛基因组
GenomicstructuralvariantsconstrainandfacilitateadaptationinnaturalpopulationsofTheobromacacao,thechocolatetree基因组结构变异在可可树(Theobromacacao)自然种群中的适应性限制与促进作用意义基因组结构变异(SVs)是适应和物种形成的重要因素,但我们对其整体适应性后果的理解仍然有限
- 多式联运最优路径算法
SugarPPig
人工智能大数据业务算法
多式联运的最优路径优化问题涉及运输成本、时间、碳排放等多目标权衡,需结合运输方式(公路、铁路、水路、航空等)的协同性,通过算法模型寻找综合最优解。以下是相关研究进展与算法应用的总结:一、多式联运路径优化的核心目标经济性:最小化运输成本、转运成本及惩罚成本(如延迟成本)。时效性:缩短总运输时间,包括节点间运输时间与方式转换时间。低碳化:将碳排放量或碳交易成本纳入目标函数,支持绿色物流。安全性:针对危
- 内点法在线性规划中的应用:从理论到实践
ningaiiii
机器学习与深度学习python算法
内点法在线性规划中的应用:从理论到实践1.引言内点法(InteriorPointMethod)是求解线性规划问题的另一个重要算法。与单纯形法沿着可行域边界移动不同,内点法通过在可行域内部直接逼近最优解。这种方法最早由Karmarkar在1984年提出,为大规模优化问题提供了一个多项式时间的解决方案。本文将深入探讨内点法的原理和实现,并通过实例展示其在实际优化问题中的应用。2.理论基础2.1线性规划
- 【智能算法】协同进化算法
大雨淅淅
智能算法人工智能机器学习网络算法
1、进化算法自从达尔文的生物进化论被接受,基于自然界中生物优胜劣汰的生存规则发展起来的生物进化的理论研究得到了空前的发展。将生物遗传变异、优胜劣汰的生存机制应用到优化领域,就得到了进化计算(EvolutionaryComputation,EC)。以种群形式存在的物种,想要生存下去,就必须通过遗传变异来适应环境,通过自身的不断完善来适应生存环境。遗传的目的在于将父代的优良性能传递给子代,让子代能更好
- vue3中响应式数组操作的几种方法
AI小美好
vueweb前端前端问题处理vue.js前端javascript
在Vue3中如何优雅地操作响应式数组以保持性能并实现实时响应?可以考虑以下几个方面:一、使用Vue提供的数组变异方法直接使用原生变异方法Vue3对数组的原生变异方法(如push、pop、shift、unshift、splice、sort、reverse)进行了包裹,使得这些操作能够触发视图更新。例如:constarr=reactive([1,2,3]);arr.push(4);这种方式是最简单直接
- 机器学习: 逻辑回归
小源学AI
人工智能机器学习逻辑回归人工智能
概念与定义逻辑回归是一种用于分类问题的统计方法。它通过计算目标变量的概率来预测类别归属,并假设数据服从伯努利分布(二分类)或多项式分布(多分类)。逻辑回归模型输出的是概率值,通常使用sigmoid函数将线性组合映射到0和1之间。1.概念逻辑回归用于解决分类问题,特别是二分类问题。它通过估计输入变量与目标变量之间的关系来预测目标变量的类别。2.定义逻辑回归是一种广义线性模型,其核心思想是将线性组合通
- Python实现基因遗传算法
闲人编程
pythonpython开发语言基因遗传算法
目录基因遗传算法简介基因遗传算法的基本步骤Python实现基因遗传算法场景:优化二次函数Python代码实现代码解释场景说明总结基因遗传算法简介基因遗传算法(GeneticAlgorithm,GA)是一种基于自然选择和遗传学原理的优化算法,适用于求解复杂的组合优化问题。它通过模拟生物进化过程,如选择、交叉、变异等,逐步优化种群中的个体,最终逼近全局最优解。基因遗传算法的基本步骤初始化种群:随机生成
- 基于Python的人工智能驱动基因组变异算法:设计与应用(下)
Allen_LVyingbo
python医疗高效编程研发python人工智能算法健康医疗系统架构
3.3.2数据清洗与预处理在基因组变异分析中,原始数据往往包含各种噪声和不完整信息,数据清洗与预处理是确保分析结果准确性和可靠性的关键步骤。通过Python的相关库和工具,可以有效地去除噪声、填补缺失值、标准化数据等,为后续的分析提供高质量的数据基础。在基因组数据中,噪声数据可能来源于测序误差、实验操作不当等因素,这些噪声会干扰分析结果的准确性。使用Python的相关库和工具可以对数据进行过滤,去
- 基于Python的人工智能驱动基因组变异算法:设计与应用(上)
Allen_LVyingbo
python医疗高效编程研发python人工智能算法健康医疗
一、引言1.1研究目标与内容本研究旨在设计并应用基于Python的人工智能驱动的基因组变异算法,以应对基因组学研究中日益增长的数据挑战,提高对基因组变异的理解和应用能力。主要研究内容包括:数据预处理:利用Python的Biopython、pandas等库,对来自公共数据库(如dbSNP、ClinVar、1000GenomesProject)的基因组数据(VCF、BAM、FASTA等格式)进行清洗、
- 图像拉格朗日插值法matlab_matlab – 拉格朗日插值方法
华亿
图像拉格朗日插值法matlab
是的,一些建议(在下面的版本1中实现):if循环可以与上面的组合(只需通过下面的jr(jr~=j)使索引跳过k);polynomialSize总是等长(outputConv),它总是等于n(因为你有n个数据点,第n-1个多项式有n个系数),所以最后一个for循环和下一个行也可以用简单的L(k,=乘数*outputConv;所以我在http://en.wikipedia.org/wiki/Lagra
- Aitken 逐次线性插值
F_D_Z
数理数值分析Aitken逐次线性插值
Aitken逐次线性插值用Lagrange插值多项式Ln(x)L_n(x)Ln(x)计算函数近似值时,如需增加插值节点,那么原来算出的数据均不能利用,必须重新计算。为克服这个缺点,可用逐次线性插值方法求得高次插值。令Ii1,i2,...,in(x)I_{{i_1},{i_2},...,i_n(x)}Ii1,i2,...,in(x)表示函数f(x)f(x)f(x)关于节点xi1,xi2,⋅⋅⋅,xi
- 张驰咨询:六西格玛培训如何让离散制造业逆袭成王?
张驰课堂
六西格玛培训离散制造业
离散制造业,作为现代工业的重要组成部分,面临着日益激烈的市场竞争和不断变化的客户需求。为了保持竞争优势,企业不仅需要提高产品质量,降低成本,还需要优化生产流程,提高生产效率。而六西格玛培训作为一种系统化的质量管理方法,为离散制造业提供了实现这些目标的有效途径。六西格玛管理起源于20世纪80年代的摩托罗拉公司,是一种以追求卓越质量为核心的管理方法。它通过消除缺陷和减少变异,来提高顾客满意度。在离散制
- 机器学习数学基础:8.泰勒公式
@心都
机器学习数学基础机器学习人工智能
一、泰勒公式的由来:为啥我们需要它?同学们,想象一下,你拿到了一块超级复杂、弯弯曲曲,就像一团乱麻似的拼图(假设这拼图代表一个复杂函数,比如一条有各种起伏的波浪线),而你手头只有一些简单的积木块(这里的积木块就是多项式啦),现在要你用这些简单积木拼出拼图的模样,是不是感觉无从下手?这时候,泰勒公式就像一位智慧的导师闪亮登场,它会告诉你:“别慌,孩子,我来教你怎么挑选积木块,怎么决定它们的形状和大小
- 【多目标免疫遗传算法在选址中的应用】使用多目标免疫遗传算法计算较简化海上救援选址问题研究(Matlab代码实现)
Ps.729
前端
欢迎来到本博客❤️❤️博主优势:博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。⛳️座右铭:行百里者,半于九十。本文目录如下:目录⛳️赠与读者1概述多目标免疫遗传算法在海上救援选址中的应用研究一、引言二、海上救援选址问题分析(一)问题描述(二)影响因素(三)多目标特性三、多目标免疫遗传算法原理(一)遗传算法基础(二)免疫遗传算法(三)多目标免疫遗传算法(四)NSGA-II算法四、基于MATLAB
- 【深度学习】权重衰减
熙曦Sakura
深度学习深度学习人工智能
权重衰减前一节我们描述了过拟合的问题,本节我们将介绍一些正则化模型的技术。我们总是可以通过去收集更多的训练数据来缓解过拟合。但这可能成本很高,耗时颇多,或者完全超出我们的控制,因而在短期内不可能做到。假设我们已经拥有尽可能多的高质量数据,我们便可以将重点放在正则化技术上。回想一下,在多项式回归的例子中,我们可以通过调整拟合多项式的阶数来限制模型的容量。实际上,限制特征的数量是缓解过拟合的一种常用技
- DeepSeek R1赋能全球航运智能化:基于多目标优化的路径规划实战解析
Coderabo
DeepSeekR1模型企业级应用人工智能机器学习算法python
DeepSeekR1赋能全球航运智能化:基于多目标优化的路径规划实战解析引言:航运路径优化的重要性全球贸易90%的货物通过海运完成,每年产生约10亿吨碳排放。传统航线规划依赖船长经验,常导致5-15%的额外燃料消耗。本文基于DeepSeekR1智能系统,提出融合多目标优化的智能路径规划方案,结合实例详解算法实现。问题建模与数学描述优化目标函数minimizeF(x)=[f₁(x),f₂(x),f₃
- 如何利用矩阵化简平面上的二次型曲线
原装穿山乙思密达
解析几何矩阵高等代数解析几何线性代数
文章目录二次型曲线的定义将二次型曲线写成矩阵形式通过移轴,进一步化简方程情况1:特征值ω1,ω2\omega_1,\omega_2ω1,ω2同号情况2:特征值ω1,ω2\omega_1,\omega_2ω1,ω2异号情况3:特征值ω1,ω2\omega_1,\omega_2ω1,ω2有且仅有一个为0总结二次型曲线的定义在二维欧氏平面上,一个二次型曲线是一个关于x,yx,yx,y的二元二次多项式:F
- python cv2 matchtemplate_机器学习进阶-图像金字塔与轮廓检测-模板匹配(单目标匹配和多目标匹配)1.cv2.matchTemplate(进行模板匹配) 2.cv2.minMa...
weixin_39621044
pythoncv2matchtemplate
1.cv2.matchTemplate(src,template,method)#用于进行模板匹配参数说明:src目标图像,template模板,method使用什么指标做模板的匹配度指标2.min_val,max_val,min_loc,max_loc=cv2.minMaxLoc(ret)#找出矩阵中最大值和最小值,即其对应的(x,y)的位置参数说明:min_val,max_val,min_lo
- UnityShader常用函数和变量
微光守望者
unity图形渲染
UnityShader常用函数和变量后续在应用的过程中,不断更新数学函数函数介绍smoothstep(min,max,x)一种平滑插值的方法,对于创建柔和的边缘或过渡效果特别有用,smoothstep函数的原理是通过一个三次多项式对输入值x在定义的两个边缘值edge0和edge1之间进行非线性插值,使得当x位于edge0和edge1之外时结果分别为0或1,而当x在这两个边缘值之间时,则产生一个从0
- 深度学习基因组学+机器学习单细胞分析,当下最火热研究方向!
qwmb919
人工智能深度学习机器学习python
深度学习已经被广泛应用于基因组学研究中,利用已知的训练集对数据的类型和应答结果进行预测,深度学习,可以进行预测和降维分析。深度学习模型的能力更强且更灵活,在适当的训练数据下,深度学习可以在较少人工参与的情况下自动学习特征和规律。调控基因组学,变异检测,致病性评分成功应用。深度学习可以提高基因组数据的可解释性,并将基因组数据转化为可操作的临床信息。深度学习通过强大的深度神经网络模型从高维大数据中自动
- 深度学习之核函数
fpcc
AI及算法ai
深度学习之核函数在机器学习中,常看到多项式核函数、高斯核函数,那什么叫核函数(KernelFunction,或者KernelTrick)呢?它有什么用呢。支持向量机通过某非线性变换φ(x),将输入空间映射到高维特征空间。特征空间的维数可能非常高。如果支持向量机的求解只用到内积运算,而在低维输入空间又存在某个函数K(x,x′),它恰好等于在高维空间中这个内积,即K(x,x′)=。那么支持向量机就不用
- java线程Thread和Runnable区别和联系
zx_code
javajvmthread多线程Runnable
我们都晓得java实现线程2种方式,一个是继承Thread,另一个是实现Runnable。
模拟窗口买票,第一例子继承thread,代码如下
package thread;
public class ThreadTest {
public static void main(String[] args) {
Thread1 t1 = new Thread1(
- 【转】JSON与XML的区别比较
丁_新
jsonxml
1.定义介绍
(1).XML定义
扩展标记语言 (Extensible Markup Language, XML) ,用于标记电子文件使其具有结构性的标记语言,可以用来标记数据、定义数据类型,是一种允许用户对自己的标记语言进行定义的源语言。 XML使用DTD(document type definition)文档类型定义来组织数据;格式统一,跨平台和语言,早已成为业界公认的标准。
XML是标
- c++ 实现五种基础的排序算法
CrazyMizzz
C++c算法
#include<iostream>
using namespace std;
//辅助函数,交换两数之值
template<class T>
void mySwap(T &x, T &y){
T temp = x;
x = y;
y = temp;
}
const int size = 10;
//一、用直接插入排
- 我的软件
麦田的设计者
我的软件音乐类娱乐放松
这是我写的一款app软件,耗时三个月,是一个根据央视节目开门大吉改变的,提供音调,猜歌曲名。1、手机拥有者在android手机市场下载本APP,同意权限,安装到手机上。2、游客初次进入时会有引导页面提醒用户注册。(同时软件自动播放背景音乐)。3、用户登录到主页后,会有五个模块。a、点击不胫而走,用户得到开门大吉首页部分新闻,点击进入有新闻详情。b、
- linux awk命令详解
被触发
linux awk
awk是行处理器: 相比较屏幕处理的优点,在处理庞大文件时不会出现内存溢出或是处理缓慢的问题,通常用来格式化文本信息
awk处理过程: 依次对每一行进行处理,然后输出
awk命令形式:
awk [-F|-f|-v] ‘BEGIN{} //{command1; command2} END{}’ file
[-F|-f|-v]大参数,-F指定分隔符,-f调用脚本,-v定义变量 var=val
- 各种语言比较
_wy_
编程语言
Java Ruby PHP 擅长领域
- oracle 中数据类型为clob的编辑
知了ing
oracle clob
public void updateKpiStatus(String kpiStatus,String taskId){
Connection dbc=null;
Statement stmt=null;
PreparedStatement ps=null;
try {
dbc = new DBConn().getNewConnection();
//stmt = db
- 分布式服务框架 Zookeeper -- 管理分布式环境中的数据
矮蛋蛋
zookeeper
原文地址:
http://www.ibm.com/developerworks/cn/opensource/os-cn-zookeeper/
安装和配置详解
本文介绍的 Zookeeper 是以 3.2.2 这个稳定版本为基础,最新的版本可以通过官网 http://hadoop.apache.org/zookeeper/来获取,Zookeeper 的安装非常简单,下面将从单机模式和集群模式两
- tomcat数据源
alafqq
tomcat
数据库
JNDI(Java Naming and Directory Interface,Java命名和目录接口)是一组在Java应用中访问命名和目录服务的API。
没有使用JNDI时我用要这样连接数据库:
03. Class.forName("com.mysql.jdbc.Driver");
04. conn
- 遍历的方法
百合不是茶
遍历
遍历
在java的泛
- linux查看硬件信息的命令
bijian1013
linux
linux查看硬件信息的命令
一.查看CPU:
cat /proc/cpuinfo
二.查看内存:
free
三.查看硬盘:
df
linux下查看硬件信息
1、lspci 列出所有PCI 设备;
lspci - list all PCI devices:列出机器中的PCI设备(声卡、显卡、Modem、网卡、USB、主板集成设备也能
- java常见的ClassNotFoundException
bijian1013
java
1.java.lang.ClassNotFoundException: org.apache.commons.logging.LogFactory 添加包common-logging.jar2.java.lang.ClassNotFoundException: javax.transaction.Synchronization
- 【Gson五】日期对象的序列化和反序列化
bit1129
反序列化
对日期类型的数据进行序列化和反序列化时,需要考虑如下问题:
1. 序列化时,Date对象序列化的字符串日期格式如何
2. 反序列化时,把日期字符串序列化为Date对象,也需要考虑日期格式问题
3. Date A -> str -> Date B,A和B对象是否equals
默认序列化和反序列化
import com
- 【Spark八十六】Spark Streaming之DStream vs. InputDStream
bit1129
Stream
1. DStream的类说明文档:
/**
* A Discretized Stream (DStream), the basic abstraction in Spark Streaming, is a continuous
* sequence of RDDs (of the same type) representing a continuous st
- 通过nginx获取header信息
ronin47
nginx header
1. 提取整个的Cookies内容到一个变量,然后可以在需要时引用,比如记录到日志里面,
if ( $http_cookie ~* "(.*)$") {
set $all_cookie $1;
}
变量$all_cookie就获得了cookie的值,可以用于运算了
- java-65.输入数字n,按顺序输出从1最大的n位10进制数。比如输入3,则输出1、2、3一直到最大的3位数即999
bylijinnan
java
参考了网上的http://blog.csdn.net/peasking_dd/article/details/6342984
写了个java版的:
public class Print_1_To_NDigit {
/**
* Q65.输入数字n,按顺序输出从1最大的n位10进制数。比如输入3,则输出1、2、3一直到最大的3位数即999
* 1.使用字符串
- Netty源码学习-ReplayingDecoder
bylijinnan
javanetty
ReplayingDecoder是FrameDecoder的子类,不熟悉FrameDecoder的,可以先看看
http://bylijinnan.iteye.com/blog/1982618
API说,ReplayingDecoder简化了操作,比如:
FrameDecoder在decode时,需要判断数据是否接收完全:
public class IntegerH
- js特殊字符过滤
cngolon
js特殊字符js特殊字符过滤
1.js中用正则表达式 过滤特殊字符, 校验所有输入域是否含有特殊符号function stripscript(s) { var pattern = new RegExp("[`~!@#$^&*()=|{}':;',\\[\\].<>/?~!@#¥……&*()——|{}【】‘;:”“'。,、?]"
- hibernate使用sql查询
ctrain
Hibernate
import java.util.Iterator;
import java.util.List;
import java.util.Map;
import org.hibernate.Hibernate;
import org.hibernate.SQLQuery;
import org.hibernate.Session;
import org.hibernate.Transa
- linux shell脚本中切换用户执行命令方法
daizj
linuxshell命令切换用户
经常在写shell脚本时,会碰到要以另外一个用户来执行相关命令,其方法简单记下:
1、执行单个命令:su - user -c "command"
如:下面命令是以test用户在/data目录下创建test123目录
[root@slave19 /data]# su - test -c "mkdir /data/test123" 
- 好的代码里只要一个 return 语句
dcj3sjt126com
return
别再这样写了:public boolean foo() { if (true) { return true; } else { return false;
- Android动画效果学习
dcj3sjt126com
android
1、透明动画效果
方法一:代码实现
public View onCreateView(LayoutInflater inflater, ViewGroup container, Bundle savedInstanceState)
{
View rootView = inflater.inflate(R.layout.fragment_main, container, fals
- linux复习笔记之bash shell (4)管道命令
eksliang
linux管道命令汇总linux管道命令linux常用管道命令
转载请出自出处:
http://eksliang.iteye.com/blog/2105461
bash命令执行的完毕以后,通常这个命令都会有返回结果,怎么对这个返回的结果做一些操作呢?那就得用管道命令‘|’。
上面那段话,简单说了下管道命令的作用,那什么事管道命令呢?
答:非常的经典的一句话,记住了,何为管
- Android系统中自定义按键的短按、双击、长按事件
gqdy365
android
在项目中碰到这样的问题:
由于系统中的按键在底层做了重新定义或者新增了按键,此时需要在APP层对按键事件(keyevent)做分解处理,模拟Android系统做法,把keyevent分解成:
1、单击事件:就是普通key的单击;
2、双击事件:500ms内同一按键单击两次;
3、长按事件:同一按键长按超过1000ms(系统中长按事件为500ms);
4、组合按键:两个以上按键同时按住;
- asp.net获取站点根目录下子目录的名称
hvt
.netC#asp.nethovertreeWeb Forms
使用Visual Studio建立一个.aspx文件(Web Forms),例如hovertree.aspx,在页面上加入一个ListBox代码如下:
<asp:ListBox runat="server" ID="lbKeleyiFolder" />
那么在页面上显示根目录子文件夹的代码如下:
string[] m_sub
- Eclipse程序员要掌握的常用快捷键
justjavac
javaeclipse快捷键ide
判断一个人的编程水平,就看他用键盘多,还是鼠标多。用键盘一是为了输入代码(当然了,也包括注释),再有就是熟练使用快捷键。 曾有人在豆瓣评
《卓有成效的程序员》:“人有多大懒,才有多大闲”。之前我整理了一个
程序员图书列表,目的也就是通过读书,让程序员变懒。 写道 程序员作为特殊的群体,有的人可以这么懒,懒到事情都交给机器去做,而有的人又可
- c++编程随记
lx.asymmetric
C++笔记
为了字体更好看,改变了格式……
&&运算符:
#include<iostream>
using namespace std;
int main(){
int a=-1,b=4,k;
k=(++a<0)&&!(b--
- linux标准IO缓冲机制研究
音频数据
linux
一、什么是缓存I/O(Buffered I/O)缓存I/O又被称作标准I/O,大多数文件系统默认I/O操作都是缓存I/O。在Linux的缓存I/O机制中,操作系统会将I/O的数据缓存在文件系统的页缓存(page cache)中,也就是说,数据会先被拷贝到操作系统内核的缓冲区中,然后才会从操作系统内核的缓冲区拷贝到应用程序的地址空间。1.缓存I/O有以下优点:A.缓存I/O使用了操作系统内核缓冲区,
- 随想 生活
暗黑小菠萝
生活
其实账户之前就申请了,但是决定要自己更新一些东西看也是最近。从毕业到现在已经一年了。没有进步是假的,但是有多大的进步可能只有我自己知道。
毕业的时候班里12个女生,真正最后做到软件开发的只要两个包括我,PS:我不是说测试不好。当时因为考研完全放弃找工作,考研失败,我想这只是我的借口。那个时候才想到为什么大学的时候不能好好的学习技术,增强自己的实战能力,以至于后来找工作比较费劲。我
- 我认为POJO是一个错误的概念
windshome
javaPOJO编程J2EE设计
这篇内容其实没有经过太多的深思熟虑,只是个人一时的感觉。从个人风格上来讲,我倾向简单质朴的设计开发理念;从方法论上,我更加倾向自顶向下的设计;从做事情的目标上来看,我追求质量优先,更愿意使用较为保守和稳妥的理念和方法。
&