ResNeXt一作谢赛宁将从Meta离职,加入纽约大学任助理教授

来源:机器之心

又一位知名人工智能研究者宣布从业界离职,回归学术界。

近日,Facebook 人工智能研究院(FAIR)研究科学家谢赛宁在推特上宣布自己即将离开 FAIR,加入纽约大学担任助理教授。

ResNeXt一作谢赛宁将从Meta离职,加入纽约大学任助理教授_第1张图片

他表示自己在 FAIR 度过了极好的 4 年,将在明年 1 月正式加入纽约大学,并期待与广泛的科学和创意社区一起探索人工智能,建立新的跨学科合作。李磊、高若涵、杨笛一等多位知名研究者纷纷表示祝贺。

ResNeXt一作谢赛宁将从Meta离职,加入纽约大学任助理教授_第2张图片

图灵奖得主 Yann LeCun 也在推特上写道:「再次欢迎赛宁」。LeCun 不仅是 FAIR 的首席 AI 科学家,也是纽约大学计算机科学教授,于是 LeCun 再次欢迎了新同事。

ResNeXt一作谢赛宁将从Meta离职,加入纽约大学任助理教授_第3张图片

谢赛宁(Saining Xie)

谢赛宁在加州大学圣迭亚哥分校(UCSD)获得博士和硕士学位,师从 Zhuowen Tu 教授。读博期间,他还在 NEC Labs、Adobe、Meta(原为 Facebook)、谷歌、DeepMind 当过实习生。在此之前,谢赛宁在上海交通大学获得了学士学位。

ResNeXt一作谢赛宁将从Meta离职,加入纽约大学任助理教授_第4张图片

谢赛宁的主要研究方向包括深度学习和计算机视觉,并致力于改进表示学习技术,以帮助机器理解和利用大量的结构化信息,以及通过学习更好的表示来推动视觉识别的边界。

目前,他在 Google Scholar 上的引用量已经超过 21233。

ResNeXt一作谢赛宁将从Meta离职,加入纽约大学任助理教授_第5张图片

他有多篇论文被 ECCV、CVPR、ICLR 等顶会接收,并曾担任 ECCV 2020/2022、ICCV 2021 和 CVPR 2021/2022 的领域主席。

2016 年底,谢赛宁作为一作发表论文《Aggregated Residual Transformations for Deep Neural Networks》,提出用于图像分类的简单、高度模块化的网络结构 ResNeXt。ResNeXt 是 ResNet 和 Inception 的结合体,它不需要人工设计复杂的 Inception 结构细节,而是每一个分支都采用相同的拓扑结构。目前,该论文的引用量已超 7600。

ResNeXt一作谢赛宁将从Meta离职,加入纽约大学任助理教授_第6张图片

2020 年,谢赛宁与何恺明等人合作,发表论文《Graph Structure of Neural Networks》,论文提出了一种神经网络的新型的图表示法。该表示法有助于对神经网络的架构和预测性能有更深层的理解。

此外,他还是《 A ConvNet for the 2020s 》通讯作者,该研究重新检查了设计空间并测试了纯 ConvNet 所能达到的极限。逐渐将标准 ResNet「升级(modernize」为视觉 Transformer 的设计,并在此过程中发现了导致性能差异的几个关键组件。仅半年时间,论文引用量就已超过 200。

98d6d3d783fa1030474eee1a293b9133.png

推荐阅读

  • 西电IEEE Fellow团队出品!最新《Transformer视觉表征学习全面综述》

  • 润了!大龄码农从北京到荷兰的躺平生活(文末有福利哟!)

  • 如何做好科研?这份《科研阅读、写作与报告》PPT,手把手教你做科研

  • 一位博士在华为的22年

  • 奖金675万!3位科学家,斩获“中国诺贝尔奖”!

  • 又一名视觉大牛从大厂离开!阿里达摩院 XR 实验室负责人谭平离职

  • 最新 2022「深度学习视觉注意力 」研究概述,包括50种注意力机制和方法!

  • 【重磅】斯坦福李飞飞《注意力与Transformer》总结,84页ppt开放下载!

  • 2021李宏毅老师最新40节机器学习课程!附课件+视频资料

欢迎大家加入DLer-计算机视觉技术交流群!

大家好,群里会第一时间发布计算机视觉方向的前沿论文解读和交流分享,主要方向有:图像分类、Transformer、目标检测、目标跟踪、点云与语义分割、GAN、超分辨率、人脸检测与识别、动作行为与时空运动、模型压缩和量化剪枝、迁移学习、人体姿态估计等内容。

进群请备注:研究方向+学校/公司+昵称(如图像分类+上交+小明)

ResNeXt一作谢赛宁将从Meta离职,加入纽约大学任助理教授_第7张图片

 长按识别,邀请您进群!

你可能感兴趣的:(人工智能,深度学习,计算机视觉,机器学习,神经网络)