电磁场公式大全

代码及其markdown源代码的百度云链接如下,请注意:里面有些公式可能由于笔者的疏漏有错误,请不要全部采信。本内容仅供学习交流使用,完全免费,因此也请不要用本内容进行任何收费活动,如转载请不要对本内容进行修改。全文共5w+字符,公式全手打,作者也挺辛苦的。以上君子协议,望大家遵守。时间仓促,内容如有错误,还望多多海涵。

链接:https://pan.baidu.com/s/1Wz4_KqqFDf1AppcATzBj1g
提取码:kj7c

电磁场期末复习索引
作者:まみやはさき(間宮羽咲)
文档版本:V3.141592653
Thu 18 12:00 Fri 19 12:00 Sat 20 12:00 Jun 21 12:00 Mon 22 12:00 Tue 23 做到第8讲ppt(版本:V3.141) 做到第13讲ppt(版本:V3.14159) 做完ppt(版本:V3.1415926) 修订/增添内容(版本:V3.141592653) 打算考一个高分(想桃子 任务进度 进度进程表
修复label的错误
更新到第8章ppt
新增公式推导超链接功能
更新到13章ppt
更新完ppt
修改大量错误
新增公式高亮
V3.14
V3.1415
V3.141592
V3.1415926
V3.141592653
章节
ppt
第1讲
第2讲
第3讲
第4讲
第5讲
第6讲
第7讲
第8讲
第9讲
第10讲
第11讲
第12讲
第13讲
第14讲
第15讲
第1章-矢量分析
第2章-静电场
第3章-恒定电场
第4章-恒定磁场
第5章-静态场边值
第6章-电磁感应
第7章-时变电磁场
第8章-平面电磁波
第9章-导行波
第10章-电磁辐射

超链接目录如下

文章目录

  • 第零章
    • 常用公式定义
  • 第一章——坐标变换与哈密顿算子
    • 1、坐标变换公式
    • 2、哈密顿算子性质
    • 3、各坐标系下哈密顿算子性质
  • 第二章——位函数与矢量方程
    • 1、位函数
    • 2、矢量方程
  • 第三章——边界条件方程
    • 1、边界条件方程
  • 第四章——静电场
    • 1、对称/非对称场结论
    • 2、电偶极子
    • 3、电极化
    • 4、静电场的哈密顿算符/边界方程
    • 5、电场能量/电容
    • 6、n个导体平面相对
  • 第五章——恒定电流场
    • 1、电导、电阻、电功率
    • 2、JDεσ对偶/恒定电流场边界条件
  • 第六章——恒定磁场
    • 1、对称/非对称场结论
    • 2、磁偶极子
    • 3、磁位
    • 4、磁化
    • 5、恒定磁场的哈密顿算符/边界方程
    • 6、磁场能量/磁阻
    • 7、自感
  • 第七章——静态场边值问题
    • 1、平面电场镜像
    • 2、平面磁场镜像
    • 3、实心导体球镜像
    • 4、圆柱面镜像
    • 5、两圆柱电容
  • 第八章——正弦电磁场
    • 1、正弦场量
    • 2、色散/坡印廷矢量
    • 3、k、E、H转换
    • 4、极化
    • 5、波的衰减
    • 6、极化波/驻波/折射反射
  • 第九章——导行波
    • 1、TE/TM波
    • 2、波导中的能量损耗
    • 3、TEM波
  • 第十章——电磁辐射
    • 1、赫芝偶极子
    • 2、磁偶极子天线辐射
    • 3、天线阵
  • 最终章——公式推导合集

第零章

常用公式定义

本章用于定义一些常用的方程及其简称,方程简称见右端的括号
∇ ⋅ D ⃗ = ρ (D) \nabla \cdot \boldsymbol{\vec{D}}=\rho\tag{D} D =ρ(D)

∇ ⋅ B ⃗ = 0 (B) \nabla \cdot \boldsymbol{\vec{B}}=0\tag{B} B =0(B)

∇ × E ⃗ = − ∂ B ⃗ ∂ t (E) \nabla \times \boldsymbol{\vec{E}}=-\frac{\partial \boldsymbol{\vec{B}}}{\partial t}\tag{E} ×E =tB (E)

∇ × H ⃗ = J ⃗ + ∂ D ⃗ ∂ t (H) \nabla \times \boldsymbol{\vec{H}}=\boldsymbol{\vec{J}}+\frac{\partial \boldsymbol{\vec{D}}}{\partial t}\tag{H} ×H =J +tD (H)

∮ S D ⃗ ⋅ d S ⃗ = ∫ V ρ ⋅ d V (ID) \oint_S{\boldsymbol{\vec{D}}\cdot \text{d}\boldsymbol{\vec{S}}=\int_V{\rho \cdot \text{d}V}}\tag{ID} SD dS =VρdV(ID)

∮ S B ⃗ ⋅ d S ⃗ = 0 (IB) \oint_S{\boldsymbol{\vec{B}}\cdot \text{d}\boldsymbol{\vec{S}}=0}\tag{IB} SB dS =0(IB)

∮ l E ⃗ ⋅ d l ⃗ = − ∫ S ∂ B ⃗ ∂ t ⋅ d S ⃗ + ∮ l ( v ⃗ × B ⃗ ) ⋅ d l ⃗ (IE) \oint_l{\boldsymbol{\vec{E}}\cdot \text{d}\boldsymbol{\vec{l}}}=-\int_S{\frac{\partial \boldsymbol{\vec{B}}}{\partial t}\cdot \text{d}\boldsymbol{\vec{S}}}+\oint_l{\begin{array}{c} \left( \boldsymbol{\vec{v}}\times \boldsymbol{\vec{B}} \right) \cdot \text{d}\boldsymbol{\vec{l}}\\\end{array}}\tag{IE} lE dl =StB dS +l(v ×B )dl (IE)

∮ l H ⃗ ⋅ d l ⃗ = ∫ S J ⃗ ⋅ d S ⃗ + ∫ S ∂ D ⃗ ∂ t ⋅ d S ⃗ (IH) \oint_l{\boldsymbol{\vec{H}}\cdot \text{d}\boldsymbol{\vec{l}}}=\int_S{\boldsymbol{\vec{J}}\cdot \text{d}\boldsymbol{\vec{S}}}+\int_S{\frac{\partial \boldsymbol{\vec{D}}}{\partial t}\cdot \text{d}\boldsymbol{\vec{S}}}\tag{IH} lH dl =SJ dS +StD dS (IH)

∇ ⋅ D ⃗ = ρ (WD) \nabla \cdot \boldsymbol{\vec{D}}=\rho\tag{WD} D =ρ(WD)

∇ ⋅ B ⃗ = 0 (WB) \nabla \cdot \boldsymbol{\vec{B}}=0\tag{WB} B =0(WB)

∇ × E ⃗ = − j ω B ⃗ (WE) \nabla \times \boldsymbol{\vec{E}}=-j\omega \boldsymbol{\vec{B}}\tag{WE} ×E =jωB (WE)

∇ × H ⃗ = J ⃗ + j ω D ⃗ (WH) \nabla \times \boldsymbol{\vec{H}}=\boldsymbol{\vec{J}}+j\omega \boldsymbol{\vec{D}}\tag{WH} ×H =J +jωD (WH)

∇ × ∇ × E ⃗ = ∇ ( ∇ ⋅ E ⃗ ) − ∇ 2 E ⃗ (NXX) \nabla \times \nabla \times \boldsymbol{\vec{E}}=\nabla \left( \nabla \cdot \boldsymbol{\vec{E}} \right) -\nabla ^2\boldsymbol{\vec{E}}\tag{NXX} ××E =(E )2E (NXX)

A ⃗ × ( B ⃗ × C ⃗ ) = B ⃗ ( A ⃗ ⋅ C ⃗ ) − C ⃗ ( A ⃗ ⋅ B ⃗ ) (VXX) \boldsymbol{\vec{A}}\times \left( \boldsymbol{\vec{B}}\times \boldsymbol{\vec{C}} \right) =\boldsymbol{\vec{B}}\left( \boldsymbol{\vec{A}}\cdot \boldsymbol{\vec{C}} \right) -\boldsymbol{\vec{C}}\left( \boldsymbol{\vec{A}}\cdot \boldsymbol{\vec{B}} \right)\tag{VXX} A ×(B ×C )=B (A C )C (A B )(VXX)

∇ ⋅ ( A ⃗ × B ⃗ ) = B ⃗ ( ∇ × A ⃗ ) − A ⃗ ( ∇ × B ⃗ ) (NDX) \nabla \cdot \left( \boldsymbol{\vec{A}}\times \boldsymbol{\vec{B}} \right) =\boldsymbol{\vec{B}}\left( \nabla \times \boldsymbol{\vec{A}} \right) -\boldsymbol{\vec{A}}\left( \nabla \times \boldsymbol{\vec{B}} \right)\tag{NDX} (A ×B )=B (×A )A (×B )(NDX)

本构方程不必言明即可直接应用:
D ⃗ = ε E ⃗ \boldsymbol{\vec{D}}=\varepsilon \boldsymbol{\vec{E}} D =εE

B ⃗ = μ H ⃗ \boldsymbol{\vec{B}}=\mu \boldsymbol{\vec{H}} B =μH

J ⃗ = σ E ⃗ \boldsymbol{\vec{J}}=\sigma \boldsymbol{\vec{E}} J =σE

第一章——坐标变换与哈密顿算子

1、坐标变换公式

{ r ⃗ = { x , y , z } r ⃗ = { ρ cos ⁡ φ , ρ sin ⁡ φ , z } r ⃗ = { r sin ⁡ θ cos ⁡ φ , r sin ⁡ θ sin ⁡ φ , r cos ⁡ θ } (1.1.1) \begin{cases} \boldsymbol{\vec{r}}=\left\{ x,y,z \right\}\\ \boldsymbol{\vec{r}}=\left\{ \rho \cos \varphi ,\rho \sin \varphi ,z \right\}\\ \boldsymbol{\vec{r}}=\left\{ r\sin \theta \cos \varphi ,r\sin \theta \sin \varphi ,r\cos \theta \right\}\\\end{cases}\tag{1.1.1} r ={x,y,z}r ={ρcosφ,ρsinφ,z}r ={rsinθcosφ,rsinθsinφ,rcosθ}(1.1.1)

式==(1.1.1)==对应元素相等,例如:
{ x = r sin ⁡  ⁣  θ cos ⁡  ⁣  φ y = r sin ⁡ θ sin ⁡ φ z = r cos ⁡ θ ⇒ { r = x 2 + y 2 + z 2 sin ⁡ θ = ρ r , cos ⁡ θ = z r sin ⁡ φ = y ρ , cos ⁡ φ = x ρ (1.1.2) \begin{cases} x=r\sin \!\:\theta \cos \!\:\varphi\\ y=r\sin \theta \sin \varphi\\ z=r\cos \theta\\\end{cases}\Rightarrow \begin{cases} r=\sqrt{x^2+y^2+z^2}\\ \sin \theta =\frac{\rho}{r},\cos \theta =\frac{z}{r}\\ \sin \varphi =\frac{y}{\rho},\cos \varphi =\frac{x}{\rho}\\\end{cases}\tag{1.1.2} x=rsinθcosφy=rsinθsinφz=rcosθr=x2+y2+z2 sinθ=rρ,cosθ=rzsinφ=ρy,cosφ=ρx(1.1.2)

{ x = ρ cos ⁡  ⁣  φ y = ρ sin ⁡ φ z = z ⇒ { ρ = x 2 + y 2 cos ⁡  ⁣  φ = x ρ , sin ⁡ φ = y ρ z = z (1.1.3) \begin{cases} x=\rho \cos \!\:\varphi\\ y=\rho \sin \varphi\\ z=z\\\end{cases}\Rightarrow \begin{cases} \rho =\sqrt{x^2+y^2}\\ \cos \!\:\varphi =\frac{x}{\rho},\sin \varphi =\frac{y}{\rho}\\ z=z\\\end{cases}\tag{1.1.3} x=ρcosφy=ρsinφz=zρ=x2+y2 cosφ=ρx,sinφ=ρyz=z(1.1.3)

{ ρ = r sin ⁡ θ φ = φ z = r cos ⁡ θ ⇒ { r = ρ 2 + z 2 sin ⁡ θ = ρ r , cos ⁡ θ = z r φ = φ (1.1.4) \begin{cases} \rho =r\sin \theta\\ \varphi =\varphi\\ z=r\cos \theta\\\end{cases}\Rightarrow \begin{cases} r=\sqrt{\rho ^2+z^2}\\ \sin \theta =\frac{\rho}{r},\cos \theta =\frac{z}{r}\\ \varphi =\varphi\\\end{cases}\tag{1.1.4} ρ=rsinθφ=φz=rcosθr=ρ2+z2 sinθ=rρ,cosθ=rzφ=φ(1.1.4)

并且给出坐标间的变换公式:
[ x ^ y ^ z ^ ] = [ sin ⁡  ⁣  θ cos ⁡  ⁣  φ cos ⁡  ⁣  θ cos ⁡  ⁣  φ − sin ⁡  ⁣  φ sin ⁡  ⁣  θ sin ⁡  ⁣  φ cos ⁡  ⁣  θ sin ⁡  ⁣  φ cos ⁡  ⁣  φ cos ⁡  ⁣  θ − sin ⁡  ⁣  θ 0 ] [ r ^ θ ^ φ ^ ] (1.1.5) \left[ \begin{array}{c} \boldsymbol{\hat{x}}\\ \boldsymbol{\hat{y}}\\ \boldsymbol{\hat{z}}\\\end{array} \right] =\left[ \begin{matrix} \sin \!\:\theta \cos \!\:\varphi& \cos \!\:\theta \cos \!\:\varphi& -\sin \!\:\varphi\\ \sin \!\:\theta \sin \!\:\varphi& \cos \!\:\theta \sin \!\:\varphi& \cos \!\:\varphi\\ \cos \!\:\theta& -\sin \!\:\theta& 0\\\end{matrix} \right] \left[ \begin{array}{c} \boldsymbol{\hat{r}}\\ \boldsymbol{\hat{\theta}}\\ \boldsymbol{\hat{\varphi}}\\\end{array} \right]\tag{1.1.5} x^y^z^=sinθcosφsinθsinφcosθcosθcosφcosθsinφsinθsinφcosφ0r^θ^φ^(1.1.5)

[ x ^ y ^ z ^ ] = [ cos ⁡  ⁣  φ − sin ⁡  ⁣  φ 0 sin ⁡  ⁣  φ cos ⁡  ⁣  φ 0 0 0 1 ] [ ρ ^ φ ^ z ^ ] (1.1.6) \left[ \begin{array}{c} \boldsymbol{\hat{x}}\\ \boldsymbol{\hat{y}}\\ \boldsymbol{\hat{z}}\\\end{array} \right] =\left[ \begin{matrix} \cos \!\:\varphi& -\sin \!\:\varphi& 0\\ \sin \!\:\varphi& \cos \!\:\varphi& 0\\ 0& 0& 1\\\end{matrix} \right] \left[ \begin{array}{c} \boldsymbol{\hat{\rho}}\\ \boldsymbol{\hat{\varphi}}\\ \boldsymbol{\hat{z}}\\\end{array} \right]\tag{1.1.6} x^y^z^=cosφsinφ0sinφcosφ0001ρ^φ^z^(1.1.6)

[ ρ ^ φ ^ z ^ ] = [ sin ⁡ θ cos ⁡ θ 0 0 0 1 cos ⁡ θ − sin ⁡ θ 0 ] [ r ^ θ ^ φ ^ ] (1.1.7) \left[ \begin{array}{c} \boldsymbol{\hat{\rho}}\\ \boldsymbol{\hat{\varphi}}\\ \boldsymbol{\hat{z}}\\\end{array} \right] =\left[ \begin{matrix} \sin \theta& \cos \theta& 0\\ 0& 0& 1\\ \cos \theta& -\sin \theta& 0\\\end{matrix} \right] \left[ \begin{array}{c} \boldsymbol{\hat{r}}\\ \boldsymbol{\hat{\theta}}\\ \boldsymbol{\hat{\varphi}}\\\end{array} \right]\tag{1.1.7} ρ^φ^z^=sinθ0cosθcosθ0sinθ010r^θ^φ^(1.1.7)

考虑到此处雅可比矩阵是正交矩阵,将它们转置过来,即可得到逆变换,考虑到我们希望矩阵里由新的基的元素表示,因此如此化简:
[ r ^ θ ^ φ ^ ] = 1 r ρ [ x ρ y ρ z ρ z x z y − ρ 2 − r y r x 0 ] [ x ^ y ^ z ^ ] (1.1.8) \left[ \begin{array}{c} \boldsymbol{\hat{r}}\\ \boldsymbol{\hat{\theta}}\\ \boldsymbol{\hat{\varphi}}\\\end{array} \right] =\frac{1}{r\rho}\left[ \begin{matrix} x\rho& y\rho& z\rho\\ zx& zy& -\rho ^2\\ -ry& rx& 0\\\end{matrix} \right] \left[ \begin{array}{c} \boldsymbol{\hat{x}}\\ \boldsymbol{\hat{y}}\\ \boldsymbol{\hat{z}}\\\end{array} \right]\tag{1.1.8} r^θ^φ^=rρ1xρzxryyρzyrxzρρ20x^y^z^(1.1.8)

[ ρ ^ φ ^ z ^ ] = 1 ρ [ x y 0 − y x 0 0 0 ρ ] [ x ^ y ^ z ^ ] (1.1.9) \left[ \begin{array}{c} \boldsymbol{\hat{\rho}}\\ \boldsymbol{\hat{\varphi}}\\ \boldsymbol{\hat{z}}\\\end{array} \right] =\frac{1}{\rho}\left[ \begin{matrix} x& y& 0\\ -y& x& 0\\ 0& 0& \rho\\\end{matrix} \right] \left[ \begin{array}{c} \boldsymbol{\hat{x}}\\ \boldsymbol{\hat{y}}\\ \boldsymbol{\hat{z}}\\\end{array} \right]\tag{1.1.9} ρ^φ^z^=ρ1xy0yx000ρx^y^z^(1.1.9)

[ r ^ θ ^ φ ^ ] = 1 r [ ρ 0 z z 0 − ρ 0 r 0 ] [ ρ ^ φ ^ z ^ ] (1.1.10) \left[ \begin{array}{c} \boldsymbol{\hat{r}}\\ \boldsymbol{\hat{\theta}}\\ \boldsymbol{\hat{\varphi}}\\\end{array} \right] =\frac{1}{r}\left[ \begin{matrix} \rho& 0& z\\ z& 0& -\rho\\ 0& r& 0\\\end{matrix} \right] \left[ \begin{array}{c} \boldsymbol{\hat{\rho}}\\ \boldsymbol{\hat{\varphi}}\\ \boldsymbol{\hat{z}}\\\end{array} \right]\tag{1.1.10} r^θ^φ^=r1ρz000rzρ0ρ^φ^z^(1.1.10)

2、哈密顿算子性质

∇ f = 1 h a ∂ f ∂ a a ^ + 1 h b ∂ f ∂ b b ^ + 1 h c ∂ f ∂ c c ^ (1.2.1) \nabla f=\frac{1}{h_a}\frac{\partial f}{\partial a}\boldsymbol{\hat{a}}+\frac{1}{h_b}\frac{\partial f}{\partial b}\boldsymbol{\hat{b}}+\frac{1}{h_c}\frac{\partial f}{\partial c}\boldsymbol{\hat{c}}\tag{1.2.1} f=ha1afa^+hb1bfb^+hc1cfc^(1.2.1)

∇ ⋅ G = 1 h a h b h c ( ∂ h b h c G 1 ∂ a + ∂ h c h a G 2 ∂ b + ∂ h a h b G 3 ∂ c ) (1.2.2) \nabla \cdot \boldsymbol{G}=\frac{1}{h_ah_bh_c}\left( \frac{\partial h_bh_cG_1}{\partial a}+\frac{\partial h_ch_aG_2}{\partial b}+\frac{\partial h_ah_bG_3}{\partial c} \right) \tag{1.2.2} G=hahbhc1(ahbhcG1+bhchaG2+chahbG3)(1.2.2)

∇ × G = 1 h a h b h c ∣ h a a ^ h b b ^ h c c ^ ∂ ∂ a ∂ ∂ b ∂ ∂ c ( h a G 1 ) ( h b G 2 ) ( h c G 3 ) ∣ (1.2.3) \nabla \times \boldsymbol{G}=\frac{1}{h_ah_bh_c}\left| \begin{matrix} h_a\boldsymbol{\hat{a}}& h_b\boldsymbol{\hat{b}}& h_c\boldsymbol{\hat{c}}\\ \frac{\partial}{\partial a}& \frac{\partial}{\partial b}& \frac{\partial}{\partial c}\\ \left( h_aG_1 \right)& \left( h_bG_2 \right)& \left( h_cG_3 \right)\\\end{matrix} \right|\tag{1.2.3} ×G=hahbhc1haa^a(haG1)hbb^b(hbG2)hcc^c(hcG3)(1.2.3)

关于==(1.2.4)==式,详见参考文献1

∇ 2 = 1 h a h b h c [ ∂ ∂ a ( h b h c h a ∂ ∂ a ) + ∂ ∂ b ( h c h a h b ∂ ∂ b ) + ∂ ∂ c ( h a h b h c ∂ ∂ c ) ]    (无论标量矢量) (1.2.4) \nabla ^2=\frac{1}{h_ah_{\begin{array}{c} b\\ \end{array}}h_c}\left[ \frac{\partial}{\partial a}\left( \frac{h_{\begin{array}{c} b\\ \end{array}}h_c}{h_a}\frac{\partial}{\partial a} \right) +\frac{\partial}{\partial b}\left( \frac{h_{\begin{array}{c} c\\ \end{array}}h_a}{h_b}\frac{\partial}{\partial b} \right) +\frac{\partial}{\partial c}\left( \frac{h_{\begin{array}{c} a\\ \end{array}}h_b}{h_c}\frac{\partial}{\partial c} \right) \right] \,\,\text{(无论标量矢量)}\tag{1.2.4} 2=hahbhc1[a(hahbhca)+b(hbhchab)+c(hchahbc)](无论标量矢量)(1.2.4)

∇ f = ∂ f ∂ n ^ e ^ n (1.2.5) \nabla f=\frac{\partial f}{\partial \hat{n}}\boldsymbol{\hat{e}}_n\tag{1.2.5} f=n^fe^n(1.2.5)

∇ × ∇ × E ⃗ = ∇ ( ∇ ⋅ E ⃗ ) − ∇ 2 E ⃗ (NXX) \colorbox{cyan}{$\nabla \times \nabla \times \boldsymbol{\vec{E}}=\nabla \left( \nabla \cdot \boldsymbol{\vec{E}} \right) -\nabla ^2\boldsymbol{\vec{E}}$}\tag{NXX} ××E =(E )2E (NXX)

3、各坐标系下哈密顿算子性质

{ ∇ f = ∂ f ∂ x x ^ + ∂ f ∂ y y ^ + ∂ f ∂ z z ^ ∇ f = ∂ f ∂ ρ ρ ^ + 1 ρ ∂ f ∂ φ φ ^ + ∂ f ∂ z z ^ ∇ f = ∂ f ∂ r r ^ + 1 r ∂ f ∂ θ θ ^ + 1 r sin ⁡ θ ∂ f ∂ φ φ ^ (1.3.1) \begin{cases} \nabla f =\frac{\partial f}{\partial x}\boldsymbol{\hat{x}}+\frac{\partial f}{\partial y}\boldsymbol{\hat{y}}+\frac{\partial f}{\partial z}\boldsymbol{\hat{z}}\\ \nabla f=\frac{\partial f}{\partial \rho}\boldsymbol{\hat{\rho}}+\frac{1}{\rho}\frac{\partial f}{\partial \varphi}\boldsymbol{\hat{\varphi}}+\frac{\partial f}{\partial z}\boldsymbol{\hat{z}}\\ \nabla f =\frac{\partial f}{\partial r}\boldsymbol{\hat{r}}+\frac{1}{r}\frac{\partial f}{\partial \theta}\boldsymbol{\hat{\theta}}+\frac{1}{r\sin \theta}\frac{\partial f}{\partial \varphi}\boldsymbol{\hat{\varphi}}\\\end{cases}\tag{1.3.1} f=xfx^+yfy^+zfz^f=ρfρ^+ρ1φfφ^+zfz^f=rfr^+r1θfθ^+rsinθ1φfφ^(1.3.1)

{ ∇ ⋅ G = ∂ G 1 ∂ x + ∂ G 2 ∂ y + ∂ G 3 ∂ z ∇ ⋅ G = 1 ρ ∂ ρ G 1 ∂ ρ + 1 ρ ∂ G 2 ∂ φ + ∂ G 3 ∂ z ∇ ⋅ G = 1 r 2 ∂ r 2 G 1 ∂ r + 1 r sin ⁡ θ ∂ sin ⁡ θ G 2 ∂ θ + 1 r sin ⁡ θ ∂ G 3 ∂ φ (1.3.2) \begin{cases} \nabla \cdot \boldsymbol{G} =\frac{\partial G_1}{\partial x}&+\frac{\partial G_2}{\partial y}&+\frac{\partial G_3}{\partial z}\\ \nabla \cdot \boldsymbol{G} =\frac{1}{\rho}\frac{\partial \rho G_1}{\partial \rho}&+\frac{1}{\rho}\frac{\partial G_2}{\partial \varphi}&+\frac{\partial G_3}{\partial z}\\ \nabla \cdot \boldsymbol{G}=\frac{1}{r^2}\frac{\partial r^2G_1}{\partial r}&+\frac{1}{r\sin \theta}\frac{\partial \sin \theta G_2}{\partial \theta}&+\frac{1}{r\sin \theta}\frac{\partial G_3}{\partial \varphi}\\\end{cases}\tag{1.3.2} G=xG1G=ρ1ρρG1G=r21rr2G1+yG2+ρ1φG2+rsinθ1θsinθG2+zG3+zG3+rsinθ1φG3(1.3.2)

{ ∇ × G = ∣ x ^ y ^ z ^ ∂ ∂ x ∂ ∂ y ∂ ∂ z ( G 1 ) ( G 2 ) ( G 3 ) ∣ ∇ × G = ∣ ρ ^ ρ φ ^ z ^ ∂ ∂ ρ ∂ ∂ φ ∂ ∂ z ( G 1 ) ( ρ G 2 ) ( G 3 ) ∣ ∇ × G = ∣ r ^ r θ ^ r sin ⁡ θ φ ^ ∂ ∂ r ∂ ∂ θ ∂ ∂ φ ( G 1 ) ( r G 2 ) ( r sin ⁡ θ G 3 ) ∣ (1.3.3) \begin{cases} \nabla \times \boldsymbol{G} =\left| \begin{matrix} \boldsymbol{\hat{x}}& \boldsymbol{\hat{y}}& \boldsymbol{\hat{z}}\\ \frac{\partial}{\partial x}& \frac{\partial}{\partial y}& \frac{\partial}{\partial z}\\ \left( G_1 \right)& \left( G_2 \right)& \left( G_3 \right)\\\end{matrix} \right|\\ \nabla \times \boldsymbol{G}=\left| \begin{matrix} \boldsymbol{\hat{\rho}}& \rho \boldsymbol{\hat{\varphi}}& \boldsymbol{\hat{z}}\\ \frac{\partial}{\partial \rho}& \frac{\partial}{\partial \varphi}& \frac{\partial}{\partial z}\\ \left( G_1 \right)& \left( \rho G_2 \right)& \left( G_3 \right)\\\end{matrix} \right|\\ \nabla \times \boldsymbol{G}=\left| \begin{matrix} \boldsymbol{\hat{r}}& r\boldsymbol{\hat{\theta}}& r\sin \theta \boldsymbol{\hat{\varphi}}\\ \frac{\partial}{\partial r}& \frac{\partial}{\partial \theta}& \frac{\partial}{\partial \varphi}\\ \left( G_1 \right)& \left( rG_2 \right)& \left( r\sin \theta G_3 \right)\\\end{matrix} \right|\\\end{cases}\tag{1.3.3} ×G=x^x(G1)y^y(G2)z^z(G3)×G=ρ^ρ(G1)ρφ^φ(ρG2)z^z(G3)×G=r^r(G1)rθ^θ(rG2)rsinθφ^φ(rsinθG3)(1.3.3)

{ ∇ 2 f = ∂ 2 f ∂ x 2 + ∂ 2 f ∂ y 2 + ∂ 2 f ∂ z 2 ∇ 2 f = 1 ρ ∂ ∂ ρ ( ρ ∂ f ∂ ρ ) + 1 ρ 2 ∂ 2 f ∂ φ 2 + ∂ 2 f ∂ z 2 ∇ 2 f = 1 r 2 ∂ ∂ r ( r 2 ∂ f ∂ r ) + 1 r 2 sin ⁡ θ ∂ ∂ θ ( sin ⁡ θ ∂ f ∂ θ ) + 1 r 2 sin ⁡ 2 θ ∂ 2 f ∂ φ 2 (1.3.4) \begin{cases} \nabla ^2f=\frac{\partial ^2f}{\partial x^2}+\frac{\partial ^2f}{\partial y^2}+\frac{\partial ^2f}{\partial z^2}\\ \nabla ^2f=\frac{1}{\rho}\frac{\partial}{\partial \rho}\left( \rho \frac{\partial f}{\partial \rho} \right) +\frac{1}{\rho ^2}\frac{\partial ^2f}{\partial \varphi ^2}+\frac{\partial ^2f}{\partial z^2}\\ \nabla ^2f=\frac{1}{r^2}\frac{\partial}{\partial r}\left( r^2\frac{\partial f}{\partial r} \right) +\frac{1}{r^2\sin \theta}\frac{\partial}{\partial \theta}\left( \sin \theta \frac{\partial f}{\partial \theta} \right) +\frac{1}{r^2\sin ^2\theta}\frac{\partial ^2f}{\partial \varphi ^2}\\ \end{cases}\tag{1.3.4} 2f=x22f+y22f+z22f2f=ρ1ρ(ρρf)+ρ21φ22f+z22f2f=r21r(r2rf)+r2sinθ1θ(sinθθf)+r2sin2θ1φ22f(1.3.4)

关于==(1.3.4)==式,矢量拉普拉斯算子与标量算子具有类似的特性,其中柱坐标采用文献公式(21)展开,但球坐标过长,所以保留了原矢量格式,详见参考文献1
{ ∇ 2 G ⃗ = ∂ 2 G ⃗ ∂ x 2 + ∂ 2 G ⃗ ∂ y 2 + ∂ 2 G ⃗ ∂ z 2 ∇ 2 G ⃗ = ρ ^ [ ∇ 2 G ρ − 1 ρ 2 G ρ − 2 ρ 2 ∂ G φ ∂ φ ] + φ ^ [ ∇ 2 G φ − 1 ρ 2 G φ + 2 ρ 2 ∂ G ρ ∂ φ ] + z ^ ∇ 2 G z ∇ 2 G ⃗ = 1 r 2 ∂ ∂ r ( r 2 ∂ G ⃗ ∂ r ) + 1 r 2 sin ⁡ θ ∂ ∂ θ ( sin ⁡ θ ∂ G ⃗ ∂ θ ) + 1 r 2 sin ⁡ 2 θ ∂ 2 G ⃗ ∂ φ 2 (1.3.5) \begin{cases} \nabla ^2\boldsymbol{\vec{G}}=\frac{\partial ^2\boldsymbol{\vec{G}}}{\partial x^2}+\frac{\partial ^2\boldsymbol{\vec{G}}}{\partial y^2}+\frac{\partial ^2\boldsymbol{\vec{G}}}{\partial z^2}\\ \nabla ^2\boldsymbol{\vec{G}}=\boldsymbol{\hat{\rho}}\left[ \nabla ^2G_{\rho}-\frac{1}{\rho ^2}G_{\rho}-\frac{2}{\rho ^2}\frac{\partial G_{\varphi}}{\partial \varphi} \right] +\boldsymbol{\hat{\varphi}}\left[ \nabla ^2G_{\varphi}-\frac{1}{\rho ^2}G_{\varphi}+\frac{2}{\rho ^2}\frac{\partial G_{\rho}}{\partial \varphi} \right] +\boldsymbol{\hat{z}}\nabla ^2G_z\\ \nabla ^2\boldsymbol{\vec{G}}=\frac{1}{r^2}\frac{\partial}{\partial r}\left( r^2\frac{\partial \boldsymbol{\vec{G}}}{\partial r} \right) +\frac{1}{r^2\sin \theta}\frac{\partial}{\partial \theta}\left( \sin \theta \frac{\partial \boldsymbol{\vec{G}}}{\partial \theta} \right) +\frac{1}{r^2\sin ^2\theta}\frac{\partial ^2\boldsymbol{\vec{G}}}{\partial \varphi ^2}\\ \end{cases}\tag{1.3.5} 2G =x22G +y22G +z22G 2G =ρ^[2Gρρ21Gρρ22φGφ]+φ^[2Gφρ21Gφ+ρ22φGρ]+z^2Gz2G =r21r(r2rG )+r2sinθ1θ(sinθθG )+r2sin2θ1φ22G (1.3.5)

第二章——位函数与矢量方程

1、位函数

矢量磁位函数+动态电位

其中==(2.1.3)==式推导见<跳转到推导1>

B ⃗ = ∇ × A ⃗ (2.1.1) \boldsymbol{\vec{B}}=\nabla \times \boldsymbol{\vec{A}}\tag{2.1.1} B =×A (2.1.1)

E ⃗ = − ∇ U − ∂ A ⃗ ∂ t (2.1.2) \boldsymbol{\vec{E}}=-\nabla U-\frac{\partial \boldsymbol{\vec{A}}}{\partial t}\tag{2.1.2} E =UtA (2.1.2)

∇ ⋅ A ⃗ = − μ ε ∂ U ∂ t (2.1.3) \colorbox{cyan}{$\nabla \cdot \boldsymbol{\vec{A}}=-\mu \varepsilon \frac{\partial U}{\partial t}$}\tag{2.1.3} A =μεtU(2.1.3)

对于无电流区域( ∇ × H ⃗ = 0 \nabla\times\boldsymbol{\vec H}=0 ×H =0),标可以定义量磁位
H ⃗ = − ∇ U m (2.1.4) \boldsymbol{\vec{H}}=-\nabla U_m\tag{2.1.4} H =Um(2.1.4)

2、矢量方程

达朗贝尔方程
∇ 2 A ⃗ − μ ε ∂ 2 A ⃗ ∂ t 2 = − μ J ⃗ (2.2.1) \nabla ^2\boldsymbol{\vec{A}}-\mu \varepsilon \frac{\partial ^2\boldsymbol{\vec{A}}}{\partial t^2}=-\mu \boldsymbol{\vec{J}}\tag{2.2.1} 2A μεt22A =μJ (2.2.1)

∇ 2 U − μ ε ∂ 2 U ∂ t 2 = − ρ ε (2.2.2) \nabla ^2U-\mu \varepsilon \frac{\partial ^2U}{\partial t^2}=-\frac{\rho}{\varepsilon}\tag{2.2.2} 2Uμεt22U=ερ(2.2.2)

k 2 = ω 2 μ ε k^2=\omega^2\mu\varepsilon k2=ω2με
∇ 2 A ⃗ + k 2 A ⃗ = − μ J ⃗ (PPA) \colorbox{cyan}{$\nabla ^2\boldsymbol{\vec{A}}+k^2 \boldsymbol{\vec{A}}=-\mu \boldsymbol{\vec{J}}$}\tag{PPA} 2A +k2A =μJ (PPA)

∇ 2 U + k 2 U = − ρ ε (PPU) \colorbox{cyan}{$\nabla ^2U+k^2 U=-\frac{\rho}{\varepsilon}$}\tag{PPU} 2U+k2U=ερ(PPU)

亥姆霍兹方程
∇ 2 E ⃗ = μ σ ∂ E ⃗ ∂ t + μ ε ∂ 2 E ⃗ ∂ t 2 (2.2.3) \nabla ^2\boldsymbol{\vec{E}}=\mu \sigma \frac{\partial \boldsymbol{\vec{E}}}{\partial t}+\mu \varepsilon \frac{\partial ^2\boldsymbol{\vec{E}}}{\partial t^2}\tag{2.2.3} 2E =μσtE +μεt22E (2.2.3)

∇ 2 H ⃗ = μ σ ∂ H ⃗ ∂ t + μ ε ∂ 2 H ⃗ ∂ t 2 (2.2.4) \nabla ^2\boldsymbol{\vec{H}}=\mu \sigma \frac{\partial \boldsymbol{\vec{H}}}{\partial t}+\mu \varepsilon \frac{\partial ^2\boldsymbol{\vec{H}}}{\partial t^2}\tag{2.2.4} 2H =μσtH +μεt22H (2.2.4)

若区域内没有电荷( ρ = 0 \rho=0 ρ=0),设 k 2 = ω 2 μ ε − j ω μ σ k^2=\omega ^2\mu \varepsilon -j\omega \mu \sigma k2=ω2μεjωμσ

其中==(PPE)==式推导见跳转到推导2

∇ 2 E ⃗ + k 2 E ⃗ = 0 (PPE) \colorbox{cyan}{$\nabla ^2\boldsymbol{\vec{E}}+k^2\boldsymbol{\vec{E}}=0$}\tag{PPE} 2E +k2E =0(PPE)

∇ 2 H ⃗ + k 2 H ⃗ = 0 (PPH) \colorbox{cyan}{$\nabla ^2\boldsymbol{\vec{H}}+k^2\boldsymbol{\vec{H}}=0$}\tag{PPH} 2H +k2H =0(PPH)

第三章——边界条件方程

1、边界条件方程

{ n ^ × E ⃗ = 0 E t = 0 { n ^ ⋅ D ⃗ = ρ S D n = ρ S { n ^ ⋅ B ⃗ = 0 B n = 0 { n ^ × H ⃗ = J ⃗ S H t =    J S (3.1.1) \left\{ \begin{array}{r} \boldsymbol{\hat{n}}\times \boldsymbol{\vec{E}}=0\\ E_t=0\\ \end{array} \right. \left\{ \begin{array}{r} \boldsymbol{\hat{n}}\cdot \boldsymbol{\vec{D}}=\rho _S\\ D_n=\rho _S\\ \end{array} \right. \left\{ \begin{array}{r} \boldsymbol{\hat{n}}\cdot \boldsymbol{\vec{B}}=0\\ B_n=0\\ \end{array} \right. \left\{ \begin{array}{r} \boldsymbol{\hat{n}}\times \boldsymbol{\vec{H}}=\boldsymbol{\vec{J}}_S\\ H_t=\,\,J_S\\ \end{array} \right. \tag{3.1.1} {n^×E =0Et=0{n^D =ρSDn=ρS{n^B =0Bn=0{n^×H =J SHt=JS(3.1.1)

因此:

  1. 理想导体外侧的电场E必垂直于导体表面,且KaTeX parse error: Expected '}', got 'EOF' at end of input: …colorbox{cyan}{D_n=\rho _SKaTeX parse error: Expected 'EOF', got '}' at position 1: }̲

  2. 理想导体外侧的磁场H必平行于导体表面,且KaTeX parse error: Expected '}', got 'EOF' at end of input: …colorbox{cyan}{H_t=J_SKaTeX parse error: Expected 'EOF', got '}' at position 1: }̲

第四章——静电场

1、对称/非对称场结论

有限/无限长直导线
{ E /  ⁣ / = λ 4 π ε a ( sin ⁡ θ 2 − sin ⁡ θ 1 ) E ⊥ = λ 4 π ε a ( cos ⁡ θ 1 − cos ⁡ θ 2 ) \begin{cases} E_{/\!/}=\frac{\lambda}{4\pi \varepsilon a}\left( \sin \theta _2-\sin \theta _1 \right)\\ E_{\bot}=\frac{\lambda}{4\pi \varepsilon a}\left( \cos \theta _1-\cos \theta _2 \right)\\ \end{cases} {E//=4πεaλ(sinθ2sinθ1)E=4πεaλ(cosθ1cosθ2)

{ E ⃗ r → ∞ = λ 2 π ε r r ^ U = ln ⁡ r (4.1.1) \begin{cases} \displaystyle\colorbox{cyan}{$\boldsymbol{\vec{E}}_{r\to \infty}=\frac{\lambda}{2\pi \varepsilon r}\boldsymbol{\hat{r}}$}\\ \displaystyle U=\ln r\\\end{cases}\tag{4.1.1} E r=2πεrλr^U=lnr(4.1.1)

有限/无限大圆盘
E ⃗ = λ 2 ε ( 1 − x R 2 + x 2 ) x ^ \boldsymbol{\vec{E}}=\frac{\lambda}{2\varepsilon }\left( 1-\frac{x}{\sqrt{R^2+x^2}} \right)\boldsymbol{\hat{x}} E =2ελ(1R2+x2 x)x^

E ⃗ r → ∞ = λ 2 ε x ^ (4.1.2) \colorbox{cyan}{$\boldsymbol{\vec{E}}_{r\to \infty}=\frac{\lambda}{2\varepsilon }\boldsymbol{\hat{x}}$}\tag{4.1.2} E r=2ελx^(4.1.2)

对称均匀球
{ E ⃗ = { q r 4 π ε R 3 r ^ , r < R q 4 π ε r 2 , r > R U = { ( 3 q 8 π ε R − q r 2 8 π ε 0 R 3 ) r ^ , r < R q 4 π ε r , r > R (4.1.3) \begin{cases} \boldsymbol{\vec{E}}=\begin{cases} \displaystyle\frac{qr}{4\pi \varepsilon R^3}\boldsymbol{\hat{r}}&,rR\\\end{cases}\\ U=\begin{cases} \displaystyle\left(\frac{3q}{8\pi \varepsilon R}-\frac{qr^2}{8\pi \varepsilon _0R^3}\right)\boldsymbol{\hat{r}}&,rR\\\end{cases}\\\end{cases}\tag{4.1.3} E =4πεR3qrr^4πεr2q,r<R,r>RU=(8πεR3q8πε0R3qr2)r^4πεrq,r<R,r>R(4.1.3)
半径R的圆环中垂线
{ E ⃗ = q x 4 π ε ( x 2 + R 2 ) 3 2 x ^ U = q 4 π ε ( x 2 + R 2 ) 1 2 (4.1.4) \begin{cases} \displaystyle \colorbox{cyan}{$\boldsymbol{\vec{E}}=\frac{qx}{4\pi \varepsilon \left( x^2+R^2 \right) ^{\frac{3}{2}}}\boldsymbol{\hat{x}}$}\\ \displaystyle U=\frac{q}{4\pi \varepsilon \left( x^2+R^2 \right) ^{\frac{1}{2}}}\\\end{cases}\tag{4.1.4} E =4πε(x2+R2)23qxx^U=4πε(x2+R2)21q(4.1.4)

2、电偶极子

电偶极距
p ⃗ = Q l ⃗ (4.2.1) \boldsymbol{\vec{p}}=Q\boldsymbol{\vec{l}}\tag{4.2.1} p =Ql (4.2.1)

U = p ⃗ ⋅ r ⃗ 4 π ε r 3 = p cos ⁡ θ 4 π ε r 2 (4.2.2) \colorbox{cyan}{$U$}=\frac{\boldsymbol{\vec{p}}\cdot \boldsymbol{\vec{r}}}{4\pi \varepsilon r^3}=\colorbox{cyan}{$\frac{p\cos \theta}{4\pi \varepsilon r^2}$}\tag{4.2.2} U=4πεr3p r =4πεr2pcosθ(4.2.2)

E ⃗ = − ∇ U = − ( r ^ ∂ U ∂ r + θ ^ 1 r ∂ U ∂ θ ) = p 4 π ε r 3 ( r ^ 2 cos ⁡ θ + θ ^ sin ⁡ θ ) (4.2.3) \colorbox{cyan}{$\boldsymbol{\vec{E}}$}=-\nabla U=-\left( \boldsymbol{\hat{r}}\frac{\partial U}{\partial r}+\boldsymbol{\hat{\theta}}\frac{1}{r}\frac{\partial U}{\partial \theta} \right) =\colorbox{cyan}{$\frac{p}{4\pi \varepsilon r^3}\left( \boldsymbol{\hat{r}}2\cos \theta +\boldsymbol{\hat{\theta}}\sin \theta \right)$}\tag{4.2.3} E =U=(r^rU+θ^r1θU)=4πεr3p(r^2cosθ+θ^sinθ)(4.2.3)

电转矩
M ⃗ = p ⃗ × E ⃗ (4.2.4) \boldsymbol{\vec{M}}=\boldsymbol{\vec{p}}\times \boldsymbol{\vec{E}}\tag{4.2.4} M =p ×E (4.2.4)

3、电极化

体极化电荷
ρ p ( V ) = − ∇ ⋅ P ⃗ (4.3.1) \rho _{p\left( V \right)}=-\nabla \cdot \boldsymbol{\vec{P}}\tag{4.3.1} ρp(V)=P (4.3.1)
面极化电荷(其中 n ^ \boldsymbol{\hat{n}} n^为自己指向外面)
ρ p ( S ) = n ^ ⋅ P ⃗ (4.3.2) \rho _{p\left( S \right)}=\boldsymbol{\hat{n}}\cdot \boldsymbol{\vec{P}}\tag{4.3.2} ρp(S)=n^P (4.3.2)
D、E、P关系
P ⃗ = χ e ε 0 E ⃗ D ⃗ = ε 0 E ⃗ + P ⃗ ε r = 1 + χ e } ⇒ P ⃗ = ε r − 1 ε r D ⃗ (4.3.3) \left.\begin{array}{l}\boldsymbol{\vec{P}}=\chi _e\varepsilon _0\boldsymbol{\vec{E}}\\\boldsymbol{\vec{D}}=\varepsilon_0\boldsymbol{\vec{E}}+\boldsymbol{\vec{P}}\\\varepsilon _r=1+\chi _e\end{array}\right\}\Rightarrow \boldsymbol{\vec{P}}=\frac{\varepsilon _r-1}{\varepsilon _r}\boldsymbol{\vec{D}}\tag{4.3.3} P =χeε0E D =ε0E +P εr=1+χeP =εrεr1D (4.3.3)
极化电荷与原场关系
ρ p = ( 1 − ε r ε r ) ρ + D ⃗ ⋅ ∇ ( 1 ε r ) = ε r = const ( 1 − ε r ε r ) ρ (4.3.4) \colorbox{cyan}{$\rho _p$}=\left( \frac{1-\varepsilon _r}{\varepsilon _r} \right) \rho +\boldsymbol{\vec{D}}\cdot \nabla \left( \frac{1}{\varepsilon _r} \right) \xlongequal{\varepsilon _r=\text{const}}\colorbox{cyan}{$\left( \frac{1-\varepsilon _r}{\varepsilon _r} \right) \rho$}\tag{4.3.4} ρp=(εr1εr)ρ+D (εr1)εr=const (εr1εr)ρ(4.3.4)

4、静电场的哈密顿算符/边界方程

边界方程

D的法向分量(方向为2指向1)
n ^ ⋅ ( D ⃗ 1 − D ⃗ 2 ) = ρ S (4.4.1) \boldsymbol{\hat{n}}\cdot \left( \boldsymbol{\vec{D}}_1-\boldsymbol{\vec{D}}_2 \right) =\rho _S\tag{4.4.1} n^(D 1D 2)=ρS(4.4.1)
E的切向分量为0
n ^ × ( E ⃗ 1 − E ⃗ 2 ) = 0 (4.4.2) \boldsymbol{\hat{n}}\times \left( \boldsymbol{\vec{E}}_1-\boldsymbol{\vec{E}}_2 \right) =0\tag{4.4.2} n^×(E 1E 2)=0(4.4.2)
光学性质(假设边界无自由电荷

如果2区是理想导体,那么1区电场夹角近似于0度,即与表面垂直,故分界面处处等势。
D 1 cos ⁡ θ 1 = D 2 cos ⁡ θ 2 E 1 sin ⁡ θ 1 = E 2 sin ⁡ θ 2 D = ε E } ⇒ tan ⁡ θ 1 tan

你可能感兴趣的:(电磁学)