【图像去噪】基于隐马尔可夫模型实现图像去噪处理附matlab代码

1 内容介绍

隐马尔可夫模型(HMM)是一种用参数表示的用于描述随机过程统计特性的概率模型,由马尔可夫链演变而来HMM是一种双层结构的模型6,一层是状态转移过程,由一个一阶离散马尔可夫过程来描述,由状态转移矩阵表示,满足马尔可夫假设;另一层是可见的随机过程的状态(或状态跳转)产生观测矢量的过程,用观测矢量概率分布表示。对于任意一个随机事件,如图1所示,有一组观测值序列O1O2OT,该事件还隐含着一个状态序列Q1,Q2QT虚线上方是随机事件状态的转移情况,通过转移矩阵来描述,满足马尔可夫性;虚线下方是能够得到的观测值,满足输出独立性假设1998年,Crouse和Nowak对隐马尔可夫的链式结构进行了扩展,并结合小波变换与多尺度马尔科夫模型,提出了小波域隐马尔可夫树模型HMT模型可以看作是一种树状的HMM模型,因此能够很好地描述小波系数的统计特征,目前,已广泛应用于信号检测与估计图像去噪和图像分割等方面

【图像去噪】基于隐马尔可夫模型实现图像去噪处理附matlab代码_第1张图片

2 部分代码

%load lena512;

 pepper=imread('peppers.png');

 pepper=double(pepper)/256;

sigma = 0.1; %noise standard deviation

hh = daubcqf(4); %wavelet filter

x = pepper + sigma*randn(size(pepper));

disp(['PSNR of noisy image is ' num2str(psnr(pepper,x)) 'dB']);

y=hdenoise(x,hh);

disp(['PSNR of denoised image is ' num2str(psnr(pepper,y)) 'dB']);

figure(1);

subplot(121)

image(x*255+1);

colormap(gray(256));

axis square;

title('Noisy image');

subplot(122)

image(y*255+1);

colormap(gray(256));

axis square;

title('Denoised image');

3 运行结果

【图像去噪】基于隐马尔可夫模型实现图像去噪处理附matlab代码_第2张图片

【图像去噪】基于隐马尔可夫模型实现图像去噪处理附matlab代码_第3张图片

4 参考文献

[1]汪西原. 快速小波域隐马尔可夫模型的图像去噪[J]. 宁夏大学学报:自然科学版, 2003, 24(4):4.

博主简介:擅长智能优化算法、神经网络预测、信号处理、元胞自动机、图像处理、路径规划、无人机、雷达通信、无线传感器等多种领域的Matlab仿真,相关matlab代码问题可私信交流。

部分理论引用网络文献,若有侵权联系博主删除。

你可能感兴趣的:(图像处理,matlab,开发语言)