Resnext就是一种典型的混合模型,有基础的inception+resnet组合而成,通过学习这个模型,你也可以通过以往学习的模型组合,我们每次去学习掌握一个模型的精髓就是为了融合创造新的模型。
第一步先了解下图的含义
这是resnext的三种结构,这三种结构是等价的,但是©这种结构代码容易构造,所以代码以(c)的讲解。resnext的本质在与gruops分组卷积,在之前的mobilenet网络我有先讲解这个分组的用法mobilenet网络的讲解在这里我就不再讲解groups,总之(a)是将卷积分成32个通道卷积之后相加,nn.Conv2d中的groups这个参数自动为我们分组,编写代码提供了方便。
仔细的观看,resnet里面除了通道数与resnext不同其他参数完全相同,可以看我之前写的resnet的详细讲解是一样的,这里我在简单描述一下大概的过程,图片先经过conv1,在经过pool1,然后进行第一次conv2,仔细看图中的output大小没有变,所以一会设置stride=1,之后再重复进行conv2二次,在进行conv3的时候,output有变化,所以第一次进行conv3的时候stride=2,特征图变为原来二分之一,之后再重复的三次,stride=1,特征图没有变化。后面一样。
self.conv2 = self._make_layer(64,256,1,num=layer[0])
self.conv3 = self._make_layer(256,512,2,num=layer[1])
self.conv4 = self._make_layer(512,1024,2,num=layer[2])
self.conv5 = self._make_layer(1024,2048,2,num=layer[3])
所以这里conv2中的stride=1,conv3,conv4,conv5的stride=2,进行特征图减半。图中的通道数很有规律,基本成二倍的关系,输入和输出,conv2的不一样。
class Block(nn.Module):
def __init__(self,in_channels, out_channels, stride=1, is_shortcut=False):
super(Block,self).__init__()
self.relu = nn.ReLU(inplace=True)
self.is_shortcut = is_shortcut
self.conv1 = nn.Sequential(
nn.Conv2d(in_channels, out_channels // 2, kernel_size=1,stride=stride,bias=False),
nn.BatchNorm2d(out_channels // 2),
nn.ReLU()
)
self.conv2 = nn.Sequential(
nn.Conv2d(out_channels // 2, out_channels // 2, kernel_size=3, stride=1, padding=1, groups=32,
bias=False),
nn.BatchNorm2d(out_channels // 2),
nn.ReLU()
)
self.conv3 = nn.Sequential(
nn.Conv2d(out_channels // 2, out_channels, kernel_size=1,stride=1,bias=False),
nn.BatchNorm2d(out_channels),
)
if is_shortcut:
self.shortcut = nn.Sequential(
nn.Conv2d(in_channels,out_channels,kernel_size=1,stride=stride,bias=1),
nn.BatchNorm2d(out_channels)
)
def forward(self, x):
x_shortcut = x
x = self.conv1(x)
x = self.conv2(x)
x = self.conv3(x)
if self.is_shortcut:
x_shortcut = self.shortcut(x_shortcut)
x = x + x_shortcut
x = self.relu(x)
return x
需要注意的点只有一个self.shortcut = nn.Sequential(
nn.Conv2d(in_channels,out_channels,kernel_size=1,stride=stride,bias=1),
nn.BatchNorm2d(out_channels)这个的使用,它只是用一次,在每个版块,conv2开始使用一次,后面重复的二次卷积都没用使用。以conv2讲解,本质是进过此卷积,第一次已经将浅层的特征利用过了。后面重复的二次卷积(256,256),(256,256),特征图的输入和输出一样,所以这次shortcut即使使用也没用效果。
import torch
import torch.nn as nn
class Block(nn.Module):
def __init__(self,in_channels, out_channels, stride=1, is_shortcut=False):
super(Block,self).__init__()
self.relu = nn.ReLU(inplace=True)
self.is_shortcut = is_shortcut
self.conv1 = nn.Sequential(
nn.Conv2d(in_channels, out_channels // 2, kernel_size=1,stride=stride,bias=False),
nn.BatchNorm2d(out_channels // 2),
nn.ReLU()
)
self.conv2 = nn.Sequential(
nn.Conv2d(out_channels // 2, out_channels // 2, kernel_size=3, stride=1, padding=1, groups=32,
bias=False),
nn.BatchNorm2d(out_channels // 2),
nn.ReLU()
)
self.conv3 = nn.Sequential(
nn.Conv2d(out_channels // 2, out_channels, kernel_size=1,stride=1,bias=False),
nn.BatchNorm2d(out_channels),
)
if is_shortcut:
self.shortcut = nn.Sequential(
nn.Conv2d(in_channels,out_channels,kernel_size=1,stride=stride,bias=1),
nn.BatchNorm2d(out_channels)
)
def forward(self, x):
x_shortcut = x
x = self.conv1(x)
x = self.conv2(x)
x = self.conv3(x)
if self.is_shortcut:
x_shortcut = self.shortcut(x_shortcut)
x = x + x_shortcut
x = self.relu(x)
return x
class Resnext(nn.Module):
def __init__(self,num_classes,layer=[3,4,6,3]):
super(Resnext,self).__init__()
self.conv1 = nn.Sequential(
nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=False),
nn.BatchNorm2d(64),
nn.ReLU(),
nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
)
self.conv2 = self._make_layer(64,256,1,num=layer[0])
self.conv3 = self._make_layer(256,512,2,num=layer[1])
self.conv4 = self._make_layer(512,1024,2,num=layer[2])
self.conv5 = self._make_layer(1024,2048,2,num=layer[3])
self.global_average_pool = nn.AvgPool2d(kernel_size=7, stride=1)
self.fc = nn.Linear(2048,num_classes)
def forward(self, x):
x = self.conv1(x)
x = self.conv2(x)
x = self.conv3(x)
x = self.conv4(x)
x = self.conv5(x)
x = self.global_average_pool(x)
x = torch.flatten(x,1)
x = self.fc(x)
return x
def _make_layer(self,in_channels,out_channels,stride,num):
layers = []
block_1=Block(in_channels, out_channels,stride=stride,is_shortcut=True)
layers.append(block_1)
for i in range(1, num):
layers.append(Block(out_channels,out_channels,stride=1,is_shortcut=False))
return nn.Sequential(*layers)
net = Resnext(10)
x = torch.rand((10, 3, 224, 224))
for name,layer in net.named_children():
if name != "fc":
x = layer(x)
print(name, 'output shaoe:', x.shape)
else:
x = x.view(x.size(0), -1)
x = layer(x)
print(name, 'output shaoe:', x.shape)
import torch
from torch import nn
import torch
import torch.nn as nn
class Block(nn.Module):
def __init__(self,in_channels, out_channels, stride=1, is_shortcut=False):
super(Block,self).__init__()
self.relu = nn.ReLU(inplace=True)
self.is_shortcut = is_shortcut
self.conv1 = nn.Sequential(
nn.Conv2d(in_channels, out_channels // 2, kernel_size=1,stride=stride,bias=False),
nn.BatchNorm2d(out_channels // 2),
nn.ReLU()
)
self.conv2 = nn.Sequential(
nn.Conv2d(out_channels // 2, out_channels // 2, kernel_size=3, stride=1, padding=1, groups=32,
bias=False),
nn.BatchNorm2d(out_channels // 2),
nn.ReLU()
)
self.conv3 = nn.Sequential(
nn.Conv2d(out_channels // 2, out_channels, kernel_size=1,stride=1,bias=False),
nn.BatchNorm2d(out_channels),
)
if is_shortcut:
self.shortcut = nn.Sequential(
nn.Conv2d(in_channels,out_channels,kernel_size=1,stride=stride,bias=1),
nn.BatchNorm2d(out_channels)
)
def forward(self, x):
x_shortcut = x
x = self.conv1(x)
x = self.conv2(x)
x = self.conv3(x)
if self.is_shortcut:
x_shortcut = self.shortcut(x_shortcut)
x = x + x_shortcut
x = self.relu(x)
return x
class Resnext(nn.Module):
def __init__(self,num_classes,layer=[3,4,6,3]):
super(Resnext,self).__init__()
self.conv1 = nn.Sequential(
nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=False),
nn.BatchNorm2d(64),
nn.ReLU(),
nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
)
self.conv2 = self._make_layer(64,256,1,num=layer[0])
self.conv3 = self._make_layer(256,512,2,num=layer[1])
self.conv4 = self._make_layer(512,1024,2,num=layer[2])
self.conv5 = self._make_layer(1024,2048,2,num=layer[3])
self.global_average_pool = nn.AdaptiveAvgPool2d((1, 1))
self.fc = nn.Linear(2048,num_classes)
def forward(self, x):
x = self.conv1(x)
x = self.conv2(x)
x = self.conv3(x)
x = self.conv4(x)
x = self.conv5(x)
x = self.global_average_pool(x)
x = torch.flatten(x,1)
x = self.fc(x)
return x
def _make_layer(self,in_channels,out_channels,stride,num):
layers = []
block_1=Block(in_channels, out_channels,stride=stride,is_shortcut=True)
layers.append(block_1)
for i in range(1, num):
layers.append(Block(out_channels,out_channels,stride=1,is_shortcut=False))
return nn.Sequential(*layers)
import time
import torch
import torchvision
import torchvision.transforms as transforms
import matplotlib.pyplot as plt
def load_dataset(batch_size):
train_set = torchvision.datasets.CIFAR10(
root="data/cifar-10", train=True,
download=True, transform=transforms.ToTensor()
)
test_set = torchvision.datasets.CIFAR10(
root="data/cifar-10", train=False,
download=True, transform=transforms.ToTensor()
)
train_iter = torch.utils.data.DataLoader(
train_set, batch_size=batch_size, shuffle=True, num_workers=4
)
test_iter = torch.utils.data.DataLoader(
test_set, batch_size=batch_size, shuffle=True, num_workers=4
)
return train_iter, test_iter
def train(net, train_iter, criterion, optimizer, num_epochs, device, num_print, lr_scheduler=None, test_iter=None):
net.train()
record_train = list()
record_test = list()
for epoch in range(num_epochs):
print("========== epoch: [{}/{}] ==========".format(epoch + 1, num_epochs))
total, correct, train_loss = 0, 0, 0
start = time.time()
for i, (X, y) in enumerate(train_iter):
X, y = X.to(device), y.to(device)
output = net(X)
loss = criterion(output, y)
optimizer.zero_grad()
loss.backward()
optimizer.step()
train_loss += loss.item()
total += y.size(0)
correct += (output.argmax(dim=1) == y).sum().item()
train_acc = 100.0 * correct / total
if (i + 1) % num_print == 0:
print("step: [{}/{}], train_loss: {:.3f} | train_acc: {:6.3f}% | lr: {:.6f}" \
.format(i + 1, len(train_iter), train_loss / (i + 1), \
train_acc, get_cur_lr(optimizer)))
if lr_scheduler is not None:
lr_scheduler.step()
print("--- cost time: {:.4f}s ---".format(time.time() - start))
if test_iter is not None:
record_test.append(test(net, test_iter, criterion, device))
record_train.append(train_acc)
return record_train, record_test
def test(net, test_iter, criterion, device):
total, correct = 0, 0
net.eval()
with torch.no_grad():
print("*************** test ***************")
for X, y in test_iter:
X, y = X.to(device), y.to(device)
output = net(X)
loss = criterion(output, y)
total += y.size(0)
correct += (output.argmax(dim=1) == y).sum().item()
test_acc = 100.0 * correct / total
print("test_loss: {:.3f} | test_acc: {:6.3f}%"\
.format(loss.item(), test_acc))
print("************************************\n")
net.train()
return test_acc
def get_cur_lr(optimizer):
for param_group in optimizer.param_groups:
return param_group['lr']
def learning_curve(record_train, record_test=None):
plt.style.use("ggplot")
plt.plot(range(1, len(record_train) + 1), record_train, label="train acc")
if record_test is not None:
plt.plot(range(1, len(record_test) + 1), record_test, label="test acc")
plt.legend(loc=4)
plt.title("learning curve")
plt.xticks(range(0, len(record_train) + 1, 5))
plt.yticks(range(0, 101, 5))
plt.xlabel("epoch")
plt.ylabel("accuracy")
plt.show()
import torch.optim as optim
BATCH_SIZE = 128
NUM_EPOCHS = 12
NUM_CLASSES = 10
LEARNING_RATE = 0.1
MOMENTUM = 0.9
WEIGHT_DECAY = 0.0005
NUM_PRINT = 100
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
def main():
net = Resnext(NUM_CLASSES)
net = net.to(DEVICE)
train_iter, test_iter = load_dataset(BATCH_SIZE)
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(
net.parameters(),
lr=LEARNING_RATE,
momentum=MOMENTUM,
weight_decay=WEIGHT_DECAY,
nesterov=True
)
lr_scheduler = optim.lr_scheduler.StepLR(optimizer, step_size=5, gamma=0.1)
record_train, record_test = train(net, train_iter, criterion, optimizer, \
NUM_EPOCHS, DEVICE, NUM_PRINT, lr_scheduler, test_iter)
learning_curve(record_train, record_test)
main()