- 动态规划之背包问题(01背包,完全背包,多重背包,分组背包)
Fansv587
动态规划算法经验分享python
0、1背包问题概述0-1背包问题是一个经典的组合优化问题,属于动态规划算法的典型应用场景。该问题描述如下:有一个容量为C的背包,以及n个物品,每个物品有对应的重量wiw_iwi和价值vi(i=1,2...n)v_i(i=1,2...n)vi(i=1,2...n)。对于每个物品,我们只有两种选择:要么将其放入背包,要么不放入,即“0-1”选择(选是1,不选是0)。目标是在不超过背包容量的前提下,选择
- 【收藏不迷路】380种群智能优化算法-Matlab代码免费获取(截至2025.2.14)
88号技师
智能优化算法算法matlab优化算法人工智能
群智能优化算法可以作为很好的工具来解决许多实际问题,如特征选择、图像分割、医学诊断,经济排放调度问题,植物病害识别,工程设计,PID优化控制,设备故障诊断,机器学习模型参数整定等等。在这个领域,有一个理论:没有免费午餐(NoFreeLunch,NFL)理论。它从逻辑上证明了不存在最适合解决所有优化问题的元启发式算法。换句话说,特定的元启发式可能在一组问题上显示出非常有希望的结果,但相同的算法可能在
- 多式联运最优路径算法
SugarPPig
人工智能大数据业务算法
多式联运的最优路径优化问题涉及运输成本、时间、碳排放等多目标权衡,需结合运输方式(公路、铁路、水路、航空等)的协同性,通过算法模型寻找综合最优解。以下是相关研究进展与算法应用的总结:一、多式联运路径优化的核心目标经济性:最小化运输成本、转运成本及惩罚成本(如延迟成本)。时效性:缩短总运输时间,包括节点间运输时间与方式转换时间。低碳化:将碳排放量或碳交易成本纳入目标函数,支持绿色物流。安全性:针对危
- 内点法在线性规划中的应用:从理论到实践
ningaiiii
机器学习与深度学习python算法
内点法在线性规划中的应用:从理论到实践1.引言内点法(InteriorPointMethod)是求解线性规划问题的另一个重要算法。与单纯形法沿着可行域边界移动不同,内点法通过在可行域内部直接逼近最优解。这种方法最早由Karmarkar在1984年提出,为大规模优化问题提供了一个多项式时间的解决方案。本文将深入探讨内点法的原理和实现,并通过实例展示其在实际优化问题中的应用。2.理论基础2.1线性规划
- 拉格朗日乘数法算法详解及python实现
闲人编程
python算法python开发语言拉格朗日乘数法数学模型
目录一、拉格朗日乘数法算法详解1.1基本思想1.2数学推导1.3算法步骤1.4算法在编程中的实现二、案例分析案例一:二维最优化问题——求f(x,y)=x2+y2f(x,y)=x^2+y^2f(x,y)=x2+y2在约束x+y=1x+y=1x+y=1下的极值2.1.1问题描述2.1.2数学模型构建2.1.3Python代码实现案例二:乘积最大化问题——求f(x,y)=xyf(x,y)=xyf(x,y
- 基于麻雀优化算法的路径优化问题(Matlab代码实现)
长安程序猿
算法matlab开发语言
欢迎来到本博客❤️❤️❤️博主优势:博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。⛳️座右铭:行百里者,半于九十。目录1概述1.引言2.麻雀搜索算法(SSA)原理3.改进策略4.实验与结果展示5.考虑几何约束条件的路径优化6.结论与展望2运行结果3参考文献4Matlab代码1概述路径规划是移动机器人技术研究领域中非常重要的部分。面对愈渐复杂的工作环境,传统的路径规划技术存在各种难以解决的问题
- Python实现基因遗传算法
闲人编程
pythonpython开发语言基因遗传算法
目录基因遗传算法简介基因遗传算法的基本步骤Python实现基因遗传算法场景:优化二次函数Python代码实现代码解释场景说明总结基因遗传算法简介基因遗传算法(GeneticAlgorithm,GA)是一种基于自然选择和遗传学原理的优化算法,适用于求解复杂的组合优化问题。它通过模拟生物进化过程,如选择、交叉、变异等,逐步优化种群中的个体,最终逼近全局最优解。基因遗传算法的基本步骤初始化种群:随机生成
- 基于二进制粒子群算法的背包问题求解- 附代码
智能算法研学社(Jack旭)
离散二进制智能优化算法智能优化算法应用算法python机器学习matlab数学建模
基于二进制粒子群算法的背包问题求解-附代码文章目录基于二进制粒子群算法的背包问题求解-附代码1.二进制粒子群算法2.背包问题3.实验结果4.参考文献5.Matlab摘要:本文主要介绍二进制粒子群算法,并用其对背包问题进行求解。1.二进制粒子群算法在PSO算法中,每个优化问题的解都是粒子在搜索空间中的位置,粒子还有一个速度值决定它们飞翔的方向和距离,然后粒子群就追随当前的最优粒子在解空间中搜索。在搜
- 数学与信息系统管理:IT架构的数学优化
AI天才研究院
计算ChatGPTDeepSeekR1&大数据AI人工智能大模型javapythonjavascriptkotlingolang架构人工智能大厂程序员硅基计算碳基计算认知计算生物计算深度学习神经网络大数据AIGCAGILLM系统架构设计软件哲学Agent程序员实现财富自由
数学与信息系统管理:IT架构的数学优化关键词:数学优化、信息系统管理、IT架构、线性规划、非线性规划、动态规划、启发式算法摘要:本文深入探讨了数学优化在信息系统管理中的应用及其重要性。首先,回顾了信息系统管理的发展历程和数学优化方法的基本概念,接着介绍了数学优化方法在信息系统管理中的实际应用和面临的挑战。本文通过逐步分析,详细讲解了基础数学知识、线性规划、非线性规划、动态规划和启发式算法等数学优化
- python实现线性规划 数学建模 代替matlab
Leowner
python数学建模python数学建模
要解决的问题如图所示importnumpyasnpfromscipyimportoptimizez=np.array([2,3,1])a=np.array([
- acados安装与调试指南:版本兼容性问题
t0_54coder
编程问题解决手册java数据库服务器个人开发
在计算机编程领域,软件工具和库的安装与调试是每个开发者必经的挑战。最近,在安装和使用acados库时,我遇到了一个有趣的问题,这里我将详细分享我的经验和解决方案。背景acados是一个用于非线性模型预测控制(NMPC)的高性能算法库,其在优化问题求解上具有显著的效率和灵活性。安装过程通常包括编译库和配置Python接口,这在官方文档中有着详细的步骤指导。问题描述在我的Ubuntu20.04LTS系
- 《从入门到精通:蓝桥杯编程大赛知识点全攻略》(八)-摘花生、地宫取宝
程序猿零零漆
蓝桥杯蓝桥杯算法java
前言在许多算法问题中,动态规划是一种非常有效的技巧,能够在处理最优化问题时提供显著的性能提升。通过将问题拆解成更小的子问题,并利用已解决的子问题来构建最终解,动态规划能够显著减少计算量。在本文中,我们将通过具体的应用案例,探讨如何使用动态规划来解决“摘花生”和“地宫取宝”这两个经典问题。摘花生HelloKitty想摘点花生送给她喜欢的米老鼠。她来到一片有网格状道路的矩形花生地(如下图),从西北角进
- Matlab实现长鼻浣熊优化算法求解单目标优化问题
程序员杨弋
Matlab基础+项目示例matlab开发语言
随着现代人类社会的快速发展,人们对于效率和效果的需求越来越高,这也促进了优化问题的研究和应用,单目标优化问题是其中一类常见的问题,它需要寻找一个最优的解以满足预设的目标函数,本文将介绍使用Matlab实现长鼻浣熊优化算法来求解单目标优化问题。一、长鼻浣熊优化算法原理长鼻浣熊优化算法(Long-nosedRaccoonOptimizationAlgorithm,LROA)是一种基于动物行为的优化算法
- 数学建模与MATLAB实现:无约束优化
青橘MATLAB学习
#数学建模Matlab编程实验数学建模matlab开发语言
无约束优化是数学建模中的一个重要问题,广泛应用于工程、经济、管理等领域。本文介绍了无约束优化的基本思想、常用算法,并重点讲解了如何使用MATLAB求解无约束优化问题。一、无约束优化问题无约束优化问题的标准形式为:minf(x)\minf(x)minf(x)其中,(x)是决策变量,(f(x))是目标函数。无约束优化的目标是找到使目标函数(f(x))最小的(x)值。二、无约束优化的基本算法1.最速下
- 数学建模与MATLAB实现:线性规划
青橘MATLAB学习
数学建模matlab开发语言
线性规划是数学建模中常用的一种优化方法,广泛应用于资源分配、生产计划、投资决策等领域。本文将介绍线性规划的基本概念,并重点讲解如何使用MATLAB求解线性规划问题,特别是对MATLAB中的linprog函数进行详细说明。一、线性规划的基本概念线性规划(LinearProgramming,LP)是数学规划中的一种,其目标函数和约束条件均为线性函数。线性规划问题的标准形式如下:minimizef(x)
- 基于离散浣熊优化算法(Discrete Coati Optimization Algorithm,DCOA)的骑手配送路径规划研究,MATLAB代码
IT猿手
无人机路径规划TSPMATLAB算法matlab开发语言动态规划深度学习机器学习
一、问题定义多骑手单起点路径规划问题,是配送领域中极具挑战性的组合优化问题。在这一情境下,设有一个固定的起始点,比如城市中的外卖配送站、快递网点或货物仓储中心。同时,存在着多名负责配送任务的骑手,以及大量分散在不同地理位置的订单交付点。每个骑手都需要从这个唯一的起点出发,依次前往各自分配到的订单交付点,完成配送任务后再返回起点。该问题的核心在于通过科学规划每个骑手的配送路线,实现配送效率的最大化。
- 遗传算法与深度学习实战(33)——WGAN详解与实现
盼小辉丶
深度学习人工智能生成对抗网络
遗传算法与深度学习实战(33)——WGAN详解与实现0.前言1.训练生成对抗网络的挑战2.GAN优化问题2.1梯度消失2.2模式崩溃2.3无法收敛3WassersteinGAN3.1Wasserstein损失3.2使用Wasserstein损失改进DCGAN小结系列链接0.前言原始的生成对抗网络(GenerativeAdversarialNetwork,GAN)在训练过程中面临着模式坍塌和梯度消失
- Python-玩转数据-凸优化
人猿宇宙
python数据挖掘人工智能
一、说明最优化问题目前在机器学习,数据挖掘等领域应用非常广泛,因为机器学习简单来说,主要做的就是优化问题,先初始化一下权重参数,然后利用优化方法来优化这个权重,直到准确率不再是上升,迭代停止,那到底什么是最优化问题呢?比如你要从上海去北京,你可以选择搭飞机,或者火车,动车,但只给你500块钱,要求你以最快的时间到达,其中到达的时间就是优化的目标,500块钱是限制条件,选择动车,火车,或者什么火车都
- 拉格朗日乘数法算法详解Python实现
闲人编程
python算法python开发语言偏导拉格朗日乘数法数学模型
目录一、拉格朗日乘数法算法详解1.1基本思想1.2数学推导1.3算法步骤1.4算法在编程中的实现二、案例分析案例一:二维最优化问题——求f(x,y)=x2+y2f(x,y)=x^2+y^2f(x,y)=x2+y2在约束x+y=1x+y=1x+y=1下的极值2.1.1问题描述2.1.2数学模型构建2.1.3算法流程图(Mermaid语法)2.1.4Python代码实现案例二:乘积最大化问题——求f(
- 【漫话机器学习系列】054.极值(Extrema)
IT古董
漫话机器学习系列专辑机器学习人工智能
极值(Extrema)定义极值是数学分析和优化问题中的一个核心概念,指函数在某个定义域内取得的最大值或最小值。根据极值的性质,可以将其分为两类:局部极值(LocalExtrema):函数在某点附近的最大值或最小值。全局极值(GlobalExtrema):函数在整个定义域内的最大值或最小值。分类局部极大值(LocalMaximum):若在点x=a附近存在某邻域,使得对任意x在该邻域内,满足f(x)≤
- 路径规划之启发式算法之二十九:鸽群算法(Pigeon-inspired Optimization, PIO)
搏博
算法大数据人工智能算法策略模式python机器学习启发式算法
鸽群算法(Pigeon-inspiredOptimization,PIO)是一种基于自然界中鸽子群体行为的智能优化算法,由Duan等人于2014年提出。该算法模拟了鸽子在飞行过程中利用地标、太阳和磁场等导航机制的行为,具有简单、高效和易于实现的特点,适用于解决连续优化问题。更多的仿生群体算法概括可以看我的文章:仿生的群体智能算法总结之一(十种)_最新群体算法-CSDN博客仿生的群体智能算法总结之二
- 基于禁忌搜索算法的TSP问题最优路径搜索matlab仿真
软件算法开发
MATLAB程序开发#路线规划matlab禁忌搜索算法TSP最优路径搜索
目录1.程序功能描述2.测试软件版本以及运行结果展示3.核心程序4.本算法原理5.完整程序1.程序功能描述基于禁忌搜索算法的TSP问题最优路径搜索,旅行商问题(TSP)是一个经典的组合优化问题。其起源可以追溯到19世纪初,最初是在物流配送、线路规划等实际场景中被提出。简单来说,给定一组城市和城市之间的距离,旅行商需要从一个城市出发,访问每个城市恰好一次,最后回到起始城市,目标是找到总路程最短的路线
- 基于Lagrange-Newton法的SQP局部算法python实现
笛在月明
算法Pythonpython算法优化
序列二次规划(SQP)是解决约束优化问题中较好的一种算法,其流程为在实现算法的过程中,使用了scipy.optimize模块:scipy.optimize.minimize(fun,x0,args=(),method=None,jac=None,hess=None,hessp=None,bounds=None,constraints=(),tol=None,callback=None,option
- 柯西变异和正余弦改进的麻雀搜索算法及python实现
闲人编程
进阶算法案例python人工智能开发语言柯西变异正余弦改进麻雀搜索
目录柯西变异和正余弦改进的麻雀搜索算法第一部分:麻雀搜索算法概述1.1麻雀搜索算法简介1.2算法特点1.3算法流程1.初始化阶段2.觅食者搜索阶段3.监视者逃逸阶段4.判断收敛条件1.4公式描述第二部分:改进方法——柯西变异与正余弦机制2.1改进思路2.2柯西变异公式2.3正余弦公式2.4改进后的流程第三部分:基于改进麻雀搜索算法的Python实现第四部分:案例1——函数优化问题(适配器模式)Ra
- 基于麻雀搜索算法SSA求解最优目标
pytorchCode
人工智能python算法Matlab
基于麻雀搜索算法SSA求解最优目标麻雀搜索算法(SparrowSearchAlgorithm,SSA)是一种启发式优化算法,灵感来自于麻雀的群体行为。该算法模拟了麻雀在寻找食物时的搜索过程,通过合作和竞争来找到最佳解决方案。在本文中,我们将介绍如何使用SSA算法来求解最优目标,并提供相应的MATLAB源代码。首先,我们需要定义问题的目标函数。假设我们要求解的目标是最小化一个连续的优化问题。那么,我
- 基于Matlab的秃鹰算法求解最优目标问题
代码编织匠人
算法matlab开发语言Matlab
基于Matlab的秃鹰算法求解最优目标问题秃鹰算法是一种基于仿生学原理的优化算法,灵感来源于秃鹰在捕食过程中的搜索策略。该算法通过模拟秃鹰的捕食行为,寻找最优解决方案。在本文中,我们将使用Matlab实现秃鹰算法,并利用该算法解决一个最优目标问题。首先,让我们定义要解决的最优目标问题。假设我们有一个函数f(x),其中x是一个向量,表示优化问题的变量。我们的目标是找到使函数f(x)取得最小值的x值。
- 【论文复现】一种改进哈里斯鹰优化算法用于连续和离散优化问题
小O的算法实验室
智能算法智能算法改进论文复现算法智能算法应用论文复现
目录1.摘要2.哈里斯鹰算法HHO原理3.改进策略4.结果展示5.参考文献6.代码获取1.摘要哈里斯鹰优化(HHO)是一种基于种群的元启发式优化算法,已被广泛应用于各种测试函数和实际问题。本文提出了一种改进的HHO算法,旨在通过简化算法结构并改进随机参数的确定方式,来提升算法性能。改进分为三个阶段:1.重新设计了确定随机参数的方法;2.更新了产生新解的策略;3.将决策机制从六步简化为四步。2.哈里
- 【智能算法】人工蜂鸟算法(AHA)原理及实现
小O的算法实验室
智能算法算法智能算法
目录1.背景2.算法原理2.1算法思想2.2算法过程3.代码实现4.参考文献1.背景2021年,Zhao等人受到蜂鸟飞行和捕食行为启发,提出了人工蜂鸟算法(ArtificialHummingbirdAgorithm,AHA)。2.算法原理2.1算法思想AHA算法是一种基于蜂鸟智能行为的生物启发优化算法,旨在解决优化问题。其主要思想包括:食物源模拟:将问题的解空间表示为食物源,每个食物源对应一个解向
- 【算法应用】基于麻雀搜索算法SSA求解车间布局优化问题
小O的算法实验室
智能算法智能算法应用车间布局优化智能算法应用车间布局优化智能算法
目录1.问题背景2.车间布局数学模型3.麻雀搜索算法SSA原理4.结果展示5.参考文献6.代码获取1.问题背景工厂设施布置的规划一直是工业工程领域不断研究和探索的内容,其中最具代表性之一的是系统布置设计(systemlayoutplanning,SLP)方法。作为一种经典且有效的方法,其为设施布置提供了很好的改善思路,但在长期的发展中也存在一些不可避免的缺点,如计算结果不够精确,很难确保计算结果较
- 改进候鸟优化算法之三:引入自适应策略的候鸟优化算法(AS-MBO)
搏博
算法算法人工智能机器学习启发式算法python
引入自适应策略的候鸟优化算法(MigratingBirdsOptimizationwithAdaptiveStrategy,简称AS-MBO)是对传统候鸟优化算法(MigratingBirdsOptimization,MBO)的一种改进。MBO算法本身是一种基于群体智能的元启发式优化算法,其灵感来源于候鸟迁徙时的“V”字形飞行队列,通过模拟候鸟的迁徙行为来优化问题的解。一、传统MBO算法概述(1)
- 如何用ruby来写hadoop的mapreduce并生成jar包
wudixiaotie
mapreduce
ruby来写hadoop的mapreduce,我用的方法是rubydoop。怎么配置环境呢:
1.安装rvm:
不说了 网上有
2.安装ruby:
由于我以前是做ruby的,所以习惯性的先安装了ruby,起码调试起来比jruby快多了。
3.安装jruby:
rvm install jruby然后等待安
- java编程思想 -- 访问控制权限
百合不是茶
java访问控制权限单例模式
访问权限是java中一个比较中要的知识点,它规定者什么方法可以访问,什么不可以访问
一:包访问权限;
自定义包:
package com.wj.control;
//包
public class Demo {
//定义一个无参的方法
public void DemoPackage(){
System.out.println("调用
- [生物与医学]请审慎食用小龙虾
comsci
生物
现在的餐馆里面出售的小龙虾,有一些是在野外捕捉的,这些小龙虾身体里面可能带有某些病毒和细菌,人食用以后可能会导致一些疾病,严重的甚至会死亡.....
所以,参加聚餐的时候,最好不要点小龙虾...就吃养殖的猪肉,牛肉,羊肉和鱼,等动物蛋白质
- org.apache.jasper.JasperException: Unable to compile class for JSP:
商人shang
maven2.2jdk1.8
环境: jdk1.8 maven tomcat7-maven-plugin 2.0
原因: tomcat7-maven-plugin 2.0 不知吃 jdk 1.8,换成 tomcat7-maven-plugin 2.2就行,即
<plugin>
- 你的垃圾你处理掉了吗?GC
oloz
GC
前序:本人菜鸟,此文研究学习来自网络,各位牛牛多指教
1.垃圾收集算法的核心思想
Java语言建立了垃圾收集机制,用以跟踪正在使用的对象和发现并回收不再使用(引用)的对象。该机制可以有效防范动态内存分配中可能发生的两个危险:因内存垃圾过多而引发的内存耗尽,以及不恰当的内存释放所造成的内存非法引用。
垃圾收集算法的核心思想是:对虚拟机可用内存空间,即堆空间中的对象进行识别
- shiro 和 SESSSION
杨白白
shiro
shiro 在web项目里默认使用的是web容器提供的session,也就是说shiro使用的session是web容器产生的,并不是自己产生的,在用于非web环境时可用其他来源代替。在web工程启动的时候它就和容器绑定在了一起,这是通过web.xml里面的shiroFilter实现的。通过session.getSession()方法会在浏览器cokkice产生JESSIONID,当关闭浏览器,此
- 移动互联网终端 淘宝客如何实现盈利
小桔子
移動客戶端淘客淘寶App
2012年淘宝联盟平台为站长和淘宝客带来的分成收入突破30亿元,同比增长100%。而来自移动端的分成达1亿元,其中美丽说、蘑菇街、果库、口袋购物等App运营商分成近5000万元。 可以看出,虽然目前阶段PC端对于淘客而言仍旧是盈利的大头,但移动端已经呈现出爆发之势。而且这个势头将随着智能终端(手机,平板)的加速普及而更加迅猛
- wordpress小工具制作
aichenglong
wordpress小工具
wordpress 使用侧边栏的小工具,很方便调整页面结构
小工具的制作过程
1 在自己的主题文件中新建一个文件夹(如widget),在文件夹中创建一个php(AWP_posts-category.php)
小工具是一个类,想侧边栏一样,还得使用代码注册,他才可以再后台使用,基本的代码一层不变
<?php
class AWP_Post_Category extends WP_Wi
- JS微信分享
AILIKES
js
// 所有功能必须包含在 WeixinApi.ready 中进行
WeixinApi.ready(function(Api) {
// 微信分享的数据
var wxData = {
&nb
- 封装探讨
百合不是茶
JAVA面向对象 封装
//封装 属性 方法 将某些东西包装在一起,通过创建对象或使用静态的方法来调用,称为封装;封装其实就是有选择性地公开或隐藏某些信息,它解决了数据的安全性问题,增加代码的可读性和可维护性
在 Aname类中申明三个属性,将其封装在一个类中:通过对象来调用
例如 1:
//属性 将其设为私有
姓名 name 可以公开
- jquery radio/checkbox change事件不能触发的问题
bijian1013
JavaScriptjquery
我想让radio来控制当前我选择的是机动车还是特种车,如下所示:
<html>
<head>
<script src="http://ajax.googleapis.com/ajax/libs/jquery/1.7.1/jquery.min.js" type="text/javascript"><
- AngularJS中安全性措施
bijian1013
JavaScriptAngularJS安全性XSRFJSON漏洞
在使用web应用中,安全性是应该首要考虑的一个问题。AngularJS提供了一些辅助机制,用来防护来自两个常见攻击方向的网络攻击。
一.JSON漏洞
当使用一个GET请求获取JSON数组信息的时候(尤其是当这一信息非常敏感,
- [Maven学习笔记九]Maven发布web项目
bit1129
maven
基于Maven的web项目的标准项目结构
user-project
user-core
user-service
user-web
src
- 【Hive七】Hive用户自定义聚合函数(UDAF)
bit1129
hive
用户自定义聚合函数,用户提供的多个入参通过聚合计算(求和、求最大值、求最小值)得到一个聚合计算结果的函数。
问题:UDF也可以提供输入多个参数然后输出一个结果的运算,比如加法运算add(3,5),add这个UDF需要实现UDF的evaluate方法,那么UDF和UDAF的实质分别究竟是什么?
Double evaluate(Double a, Double b)
- 通过 nginx-lua 给 Nginx 增加 OAuth 支持
ronin47
前言:我们使用Nginx的Lua中间件建立了OAuth2认证和授权层。如果你也有此打算,阅读下面的文档,实现自动化并获得收益。SeatGeek 在过去几年中取得了发展,我们已经积累了不少针对各种任务的不同管理接口。我们通常为新的展示需求创建新模块,比如我们自己的博客、图表等。我们还定期开发内部工具来处理诸如部署、可视化操作及事件处理等事务。在处理这些事务中,我们使用了几个不同的接口来认证:
&n
- 利用tomcat-redis-session-manager做session同步时自定义类对象属性保存不上的解决方法
bsr1983
session
在利用tomcat-redis-session-manager做session同步时,遇到了在session保存一个自定义对象时,修改该对象中的某个属性,session未进行序列化,属性没有被存储到redis中。 在 tomcat-redis-session-manager的github上有如下说明: Session Change Tracking
As noted in the &qu
- 《代码大全》表驱动法-Table Driven Approach-1
bylijinnan
java算法
关于Table Driven Approach的一篇非常好的文章:
http://www.codeproject.com/Articles/42732/Table-driven-Approach
package com.ljn.base;
import java.util.Random;
public class TableDriven {
public
- Sybase封锁原理
chicony
Sybase
昨天在操作Sybase IQ12.7时意外操作造成了数据库表锁定,不能删除被锁定表数据也不能往其中写入数据。由于着急往该表抽入数据,因此立马着手解决该表的解锁问题。 无奈此前没有接触过Sybase IQ12.7这套数据库产品,加之当时已属于下班时间无法求助于支持人员支持,因此只有借助搜索引擎强大的
- java异常处理机制
CrazyMizzz
java
java异常关键字有以下几个,分别为 try catch final throw throws
他们的定义分别为
try: Opening exception-handling statement.
catch: Captures the exception.
finally: Runs its code before terminating
- hive 数据插入DML语法汇总
daizj
hiveDML数据插入
Hive的数据插入DML语法汇总1、Loading files into tables语法:1) LOAD DATA [LOCAL] INPATH 'filepath' [OVERWRITE] INTO TABLE tablename [PARTITION (partcol1=val1, partcol2=val2 ...)]解释:1)、上面命令执行环境为hive客户端环境下: hive>l
- 工厂设计模式
dcj3sjt126com
设计模式
使用设计模式是促进最佳实践和良好设计的好办法。设计模式可以提供针对常见的编程问题的灵活的解决方案。 工厂模式
工厂模式(Factory)允许你在代码执行时实例化对象。它之所以被称为工厂模式是因为它负责“生产”对象。工厂方法的参数是你要生成的对象对应的类名称。
Example #1 调用工厂方法(带参数)
<?phpclass Example{
- mysql字符串查找函数
dcj3sjt126com
mysql
FIND_IN_SET(str,strlist)
假如字符串str 在由N 子链组成的字符串列表strlist 中,则返回值的范围在1到 N 之间。一个字符串列表就是一个由一些被‘,’符号分开的自链组成的字符串。如果第一个参数是一个常数字符串,而第二个是type SET列,则 FIND_IN_SET() 函数被优化,使用比特计算。如果str不在strlist 或st
- jvm内存管理
easterfly
jvm
一、JVM堆内存的划分
分为年轻代和年老代。年轻代又分为三部分:一个eden,两个survivor。
工作过程是这样的:e区空间满了后,执行minor gc,存活下来的对象放入s0, 对s0仍会进行minor gc,存活下来的的对象放入s1中,对s1同样执行minor gc,依旧存活的对象就放入年老代中;
年老代满了之后会执行major gc,这个是stop the word模式,执行
- CentOS-6.3安装配置JDK-8
gengzg
centos
JAVA_HOME=/usr/java/jdk1.8.0_45
JRE_HOME=/usr/java/jdk1.8.0_45/jre
PATH=$PATH:$JAVA_HOME/bin:$JRE_HOME/bin
CLASSPATH=.:$JAVA_HOME/lib/dt.jar:$JAVA_HOME/lib/tools.jar:$JRE_HOME/lib
export JAVA_HOME
- 【转】关于web路径的获取方法
huangyc1210
Web路径
假定你的web application 名称为news,你在浏览器中输入请求路径: http://localhost:8080/news/main/list.jsp 则执行下面向行代码后打印出如下结果: 1、 System.out.println(request.getContextPath()); //可返回站点的根路径。也就是项
- php里获取第一个中文首字母并排序
远去的渡口
数据结构PHP
很久没来更新博客了,还是觉得工作需要多总结的好。今天来更新一个自己认为比较有成就的问题吧。 最近在做储值结算,需求里结算首页需要按门店的首字母A-Z排序。我的数据结构原本是这样的:
Array
(
[0] => Array
(
[sid] => 2885842
[recetcstoredpay] =&g
- java内部类
hm4123660
java内部类匿名内部类成员内部类方法内部类
在Java中,可以将一个类定义在另一个类里面或者一个方法里面,这样的类称为内部类。内部类仍然是一个独立的类,在编译之后内部类会被编译成独立的.class文件,但是前面冠以外部类的类名和$符号。内部类可以间接解决多继承问题,可以使用内部类继承一个类,外部类继承一个类,实现多继承。
&nb
- Caused by: java.lang.IncompatibleClassChangeError: class org.hibernate.cfg.Exten
zhb8015
maven pom.xml关于hibernate的配置和异常信息如下,查了好多资料,问题还是没有解决。只知道是包冲突,就是不知道是哪个包....遇到这个问题的分享下是怎么解决的。。
maven pom:
<dependency>
<groupId>org.hibernate</groupId>
<ar
- Spark 性能相关参数配置详解-任务调度篇
Stark_Summer
sparkcachecpu任务调度yarn
随着Spark的逐渐成熟完善, 越来越多的可配置参数被添加到Spark中来, 本文试图通过阐述这其中部分参数的工作原理和配置思路, 和大家一起探讨一下如何根据实际场合对Spark进行配置优化。
由于篇幅较长,所以在这里分篇组织,如果要看最新完整的网页版内容,可以戳这里:http://spark-config.readthedocs.org/,主要是便
- css3滤镜
wangkeheng
htmlcss
经常看到一些网站的底部有一些灰色的图标,鼠标移入的时候会变亮,开始以为是js操作src或者bg呢,搜索了一下,发现了一个更好的方法:通过css3的滤镜方法。
html代码:
<a href='' class='icon'><img src='utv.jpg' /></a>
css代码:
.icon{-webkit-filter: graysc