- OpenCV学习(二)-二维、三维识别
香蕉可乐荷包蛋
#OpenCVopencv学习人工智能
OpenCV是一个功能强大的计算机视觉库,可以用于识别和处理二维图像和三维图像。以下是关于二维图像和三维图像识别的基础知识和示例代码。1.二维图像识别二维图像识别通常包括图像分类、对象检测、特征提取等任务。以下是一些常见的操作:1.1图像分类使用预训练模型对图像进行分类,例如使用深度学习模型(如ResNet、MobileNet等)。importcv2#加载预训练的深度学习模型net=cv2.dnn
- 【AI 赋能:Python 人工智能应用实战】5. 梯度下降家族:SGD/Adam优化器对比实验与选择策略
AI_DL_CODE
人工智能python梯度下降优化器SGDAdamPyTorch
摘要:本文系统解析梯度下降优化器的核心原理与演进脉络,构建从理论到实战的完整知识体系。理论部分梳理优化器发展里程碑,从1951年的SGD到2018年的AdamW,揭示技术迭代逻辑;通过数学公式对比SGD、Momentum、Adam等核心算法的更新机制,解析动量加速、自适应学习率的创新点。结合损失曲面分析,阐释Momentum如何逃离鞍点、Adam如何处理悬崖梯度。实战模块基于PyTorch在MNI
- 【人工智能之深度学习】6. 卷积核工作原理:从边缘检测到特征抽象的逐层演进(附可视化工具与行业实战代码)
AI_DL_CODE
人工智能深度学习卷积核特征提取卷积神经网络边缘检测特征可视化
摘要:卷积核是卷积神经网络(CNN)的核心组件,其通过局部感受野与参数共享机制实现高效特征提取。本文从数学本质出发,揭示卷积操作的空域-频域对偶性:空域卷积等价于频域乘积(F{f∗g}=F{f}⋅F{g}F\{f*g\}=F\{f\}⋅F\{g\}F{f∗g}=F{f}⋅F{g}),解释边缘检测核(Sobel、Laplacian)的频域响应特性。通过特征可视化实验表明,CNN特征呈现逐层抽象规律:
- 颠覆未来:创新代码引领人工智能与量子计算深度融合
金枝玉叶9
程序员知识储备1程序员知识储备2程序员知识储备3人工智能量子计算
摘要在信息时代飞速演进的背景下,人工智能与量子计算正以前所未有的速度互相融合,推动着科技边界的不断拓展。本文回顾了经典算法的智慧,展示了前沿深度学习模型的构建,并通过量子电路设计探讨了创新代码的可能性,为探索未来科技变革提供了全新视角。1.引言当前,科技创新正处于高速迭代的关键阶段,传统计算方法与新型技术的交汇处正成为研究热点。人工智能的发展已渗透到各行各业,而量子计算的崛起则为解决复杂计算问题提
- 使用UV管理PyTorch项目
PyTorch是深度学习研究和开发的流行选择。可以使用uv管理PyTorch项目,包括不同Python版本依赖、管理环境、甚至加速器选择等。安装Pytorch从打包角度来看,PyTorch有几个不常见的特点:许多PyTorchwheel托管在专门的索引上,而非Python包索引(PyPI)。因此,安装PyTorch通常需要配置项目使用PyTorch专属索引。PyTorch为每种加速器生成不同的构建
- AI新纪元:2025年深度学习技术突破与行业应用全景
像素笔记
杂谈人工智能深度学习ai自动驾驶工业数字化转型未来趋势技术创新
2025年,人工智能技术迎来爆发式增长,大模型、生成式AI和多模态技术持续突破,人形机器人量产元年正式开启,自动驾驶商业化进程加速,工业数字化转型全面铺开。这些进展不仅重塑了技术边界,更在多个行业创造了实际价值,推动AI从实验室走向产业化。本文将深入剖析2025年深度学习与AI领域的核心技术突破、行业应用案例及未来发展趋势,为技术从业者提供全面视角。一、深度学习核心技术突破:大模型、生成式AI与多
- 模型移植实战:从PyTorch到ONNX完整指南
慕婉0307
神经网络pytorch人工智能python
一、认识ONNXONNX(OpenNeuralNetworkExchange)是一种开放的模型表示格式,由微软和Facebook(现Meta)在2017年共同推出,旨在解决深度学习模型在不同框架之间的互操作性问题。ONNX的主要优势包括:跨框架兼容性:支持主流深度学习框架间的模型转换,包括PyTorch、TensorFlow、MXNet、CNTK等例如,可以将PyTorch训练的ResNet模型导
- PyTorch的基础概念和复杂模型的基本使用
香蕉可乐荷包蛋
AI大模型项目中的使用pytorch人工智能python
文章目录一、PyTorch基础概念二、复杂模型的学习使用一、PyTorch基础概念张量(Tensor)操作:张量是PyTorch中的基本数据结构,类似于NumPy的数组,但支持GPU加速常见操作包括创建张量、张量运算、索引、切片等importtorch#创建张量x=torch.randn(3,4)y=torch.zeros(3,4)#张量运算z=x+y自动求导(Autograd):PyTorch的
- python3.9安装tensorflow-gpu 2.6.0和torch-gpu版本各依赖包的版本对应关系
首先使用的cuDNN(8.1)、CUDA(11.2)、tensorflow-gpu(2.6.0)、python(3.9)之间对应版本Window环境下安装pytorch下载地址tensorflow官网CUDA下载官网cuDNN下载官网注意:cuDNN需要注册absl-py0.15.0astunparse1.6.3cachetools5.3.2certifi2023.7.22charset-norm
- TensorFlow GPU 2.10.1 for Python 3.9快速安装指南
疑样
本文还有配套的精品资源,点击获取简介:TensorFlowGPU2.10.1是专为Windowsx64和Python3.9设计的TensorFlow版本,它集成了GPU支持以加快深度学习模型的训练。本指南提供了该版本的概述、安装步骤及注意事项,旨在帮助开发者利用其性能优势提升机器学习项目的效率。1.TensorFlowGPU介绍1.1TensorFlow的起源与功能TensorFlow是由Goog
- 深度学习方法生成抓取位姿与6D姿态估计的完整实现
ZPC8210
ROS深度学习人工智能
如何将GraspNet等深度学习模型与6D姿态估计集成到ROS2和MoveIt中,实现高精度的机器人抓取系统。1.系统架构text[RGB-D传感器]→[物体检测与6D姿态估计]→[GraspNet抓取位姿生成]→[MoveIt运动规划]→[执行抓取]2.环境配置2.1安装依赖bash#安装PyTorch(根据CUDA版本选择)pip3installtorchtorchvisiontorchaud
- 基于深度学习的目标检测:从基础到实践
Blossom.118
机器学习与人工智能深度学习目标检测人工智能音视频语音识别计算机视觉机器学习
前言目标检测(ObjectDetection)是计算机视觉领域中的一个核心任务,其目标是在图像中定位和识别多个对象的类别和位置。近年来,深度学习技术,尤其是卷积神经网络(CNN),在目标检测任务中取得了显著进展。本文将详细介绍如何使用深度学习技术构建目标检测模型,从理论基础到代码实现,带你一步步掌握目标检测的完整流程。一、目标检测的基本概念(一)目标检测的定义目标检测是指在图像中识别和定位多个对象
- 【大语言模型基础】GPT(Generative Pre-training )生成式无监督预训练模型原理
前言ELMo:将上下文当作特征,但是无监督的语料和我们真实的语料还是有区别的,不一定符合我们特定的任务,是一种双向的特征提取。OpenAIGPT:通过transformerdecoder学习出来一个语言模型,不是固定的,通过任务fine-tuning,用transfomer代替ELMo的LSTM。OpenAIGPT其实就是缺少了encoder的transformer:当然也没了encoder与de
- 【机器学习】探索未来科技的前沿:人工智能、机器学习与大模型
AIGC零基础入门小白
AI大模型大模型教程人工智能机器学习科技AI大模型AIGCAI教程大模型教程
文章目录引言一、人工智能:从概念到现实1.1人工智能的定义1.2人工智能的发展历史1.3人工智能的分类1.4人工智能的应用二、机器学习:人工智能的核心技术2.1机器学习的定义2.2机器学习的分类2.3机器学习的实现原理2.4机器学习的应用2.5机器学习的示例代码2.6解释代码三、大模型:推动AI前沿发展的关键技术3.1大模型的定义3.2大模型的发展历程3.3深度学习与神经网络3.4大模型的优势与挑
- 基于YOLOv8的火灾智能检测系统设计与实现
斟的是酒中桃
深度学习人工智能pyqtyolo
在各类安全事故中,火灾因其突发性强、破坏力大,一直是威胁人们生命财产安全的重大隐患。传统的火灾检测方式多依赖烟雾传感器、温度传感器等,存在响应滞后、易受环境干扰等问题。随着深度学习技术的飞速发展,基于计算机视觉的火灾检测方法凭借其实时性强、检测范围广等优势,逐渐成为研究热点。本文将简单介绍一款基于深度学习的火灾智能检测系统的设计与实现过程。一、系统整体设计本火灾智能检测系统旨在通过深度学习技术实现
- 人工智能入门指南:从基础概念到实际应用
前些天发现了一个巨牛的人工智能学习网站,通俗易懂,风趣幽默,忍不住分享一下给大家。点击跳转到网站。https://www.captainbed.cn/north文章目录1.**人工智能的基本概念**1.1什么是人工智能?1.2人工智能的分类2.**人工智能的核心技术**2.1机器学习(MachineLearning)2.1.1机器学习的类型2.1.2机器学习流程2.2深度学习(DeepLearni
- Datawhale X 魔塔 Ai夏令营 --深度学习基础
一、局部极小值与全局极小值全局极小值:在损失函数的整个定义域内,损失值最小的点。这是我们在训练深度学习模型时希望找到的点,因为它代表着模型的最佳性能。局部极小值:在损失函数的一个局部区域内,损失值达到最小,但在整个函数定义域内可能不是最小的。当优化算法陷入局部极小值时,它可能会误以为已经找到了全局最优解,从而停止搜索。局部极小值的检测两种直观的方法来检测局部极小值:可视化方法:对于低维问题,我们可
- Unet源码实现(pytorch)
wyn20001128
pytorch人工智能python
U-Net是一种用于生物医学图像分割的卷积神经网络架构。它通过引入一种新颖的网络结构和训练策略解决了传统方法在数据量不足时面临的挑战。U-Net的主要思想是利用数据增强技术来高效利用有限的标注样本,并通过独特的网络设计来提高分割精度。主要贡献U-Net的主要贡献包括:1、数据增强策略:使用随机弹性变形和其他形式的数据增强来增加训练数据的多样性,从而在有限的数据集上训练出更强大的模型。2、U形网络结
- pytorch的学习笔记
wyn20001128
算法
一cuda 2006年,NVIDIA公司发布了CUDA(ComputeUnifiedDeviceArchitecture),是一种新的操作GPU计算的硬件和软件架构,是建立在NVIDIA的GPUs上的一个通用并行计算平台和编程模型,它提供了GPU编程的简易接口,基于CUDA编程可以构建基于GPU计算的应用程序。 CPU是用于负责逻辑性比较强的计算,GPU专注于执行高度线程化的并行处理任务。所以
- 深度学习模块实践手册(第十二期)
加油吧zkf
目标检测目标检测模块解析与实践深度学习人工智能计算机视觉目标检测python
56、Ghost模块论文《GhostNet:MoreFeaturesfromCheapOperations》1、作用:Ghost模块是一种轻量级的特征提取模块,旨在通过廉价操作生成更多特征图,减少计算量的同时保持模型性能。传统卷积神经网络在生成特征图时存在大量冗余计算,Ghost模块通过将特征图生成过程分解为两个步骤,有效减少了计算复杂度,特别适合移动端和嵌入式设备部署。2、机制Ghost模块的机
- DETR革命:目标检测的Transformer时代
加油吧zkf
目标检测YOLOpython开发语言人工智能图像处理
《DETR从0到1:目标检测Transformer的崛起》为什么会有DETR?在深度学习目标检测发展史上,2014~2019年几乎被基于卷积神经网络(CNN)的检测器统治:两阶段:FasterR-CNN、MaskR-CNN单阶段:YOLO、SSD、RetinaNet这些检测器虽然效果强大,但背后依赖:✅Anchor(先验框)✅NMS(非极大值抑制)✅特征金字塔、手工设计问题:结构复杂、调参困难、不
- 深度学习模块实践手册(第十一期)
加油吧zkf
目标检测目标检测模块解析与实践深度学习人工智能计算机视觉目标检测python
46、缩放点积注意力模块论文《AttentionIsAllYouNeed》1、作用:缩放点积注意力(ScaledDot-ProductAttention)是Transformer模型的核心组件,旨在解决序列建模中长距离依赖关系捕捉的问题。传统的循环神经网络(RNN)在处理长序列时存在梯度消失或爆炸的问题,且并行性较差。该模块通过计算查询(Query)、键(Key)和值(Value)之间的相似度,实
- 神经网络项目--基于FPGA的AI简易项目(1-9图片数字识别)
霖12
深度学习pytorch神经网络fpga开发人工智能机器学习
1.训练MNIST模型importtorch#导入pytorch核心库importtorch.nnasnn#神经网络模块,如卷积层importtorch.optimasoptim#优化器fromtorchvisionimportdatasets,transforms#数据集与图像预处理工具#定义CNN模型classSimpleCNN(nn.Module):#PyTorch库中所有神经网络的“基础模
- 基于NanoDet的健身姿势纠正系统开发
YOLO实战营
人工智能NanoDet深度学习计算机视觉ui
1.引言在现代健身行业中,正确的运动姿势至关重要,不仅能提升训练效果,还能预防运动损伤。尤其是在进行一些高强度的力量训练时,如深蹲、俯卧撑等,错误的姿势可能导致肌肉不平衡或关节损伤。传统的健身姿势纠正方式依赖教练的人工指导,但随着人工智能技术的发展,使用计算机视觉和深度学习技术来进行姿势纠正,逐渐成为一种高效且可扩展的解决方案。本文将详细介绍如何基于NanoDet(一个轻量化目标检测模型)开发一个
- 大模型算法工程师技术路线全解析:从基础到资深的能力跃迁
Mr.小海
大模型算法数据挖掘人工智能机器学习深度学习机器翻译web3
文章目录大模型算法工程师技术路线全解析:从基础到资深的能力跃迁一、基础阶段(0-2年经验):构建核心知识体系与工程入门数学与机器学习基础编程与深度学习框架NLP与Transformer入门二、进阶阶段(2-4年经验):深化模型技术与工程落地能力大模型预训练与微调技术预训练原理:数据与任务的协同设计微调工具:参数高效适配与工程优化对齐实践:价值观优化与实证效果分布式训练与框架工具并行策略:多维度协同
- 神经网络常见激活函数 13-Softplus函数
亲持红叶
神经网络常见激活函数神经网络人工智能深度学习
文章目录Softplus函数+导函数函数和导函数图像优缺点PyTorch中的Softplus函数TensorFlow中的Softplus函数Softplus函数+导函数Softplus函数Softplus(x)=ln(1+e x)\begin{aligned}\operatorname{Softplus}(x)&=\ln\bigl(1+e^{\,x}\bigr)\end{aligned}Sof
- 【深度学习-Day 36】CNN的开山鼻祖:从LeNet-5到AlexNet的架构演进之路
吴师兄大模型
深度学习入门到精通pythonpytorch开发语言人工智能CNN深度学习大模型
Langchain系列文章目录01-玩转LangChain:从模型调用到Prompt模板与输出解析的完整指南02-玩转LangChainMemory模块:四种记忆类型详解及应用场景全覆盖03-全面掌握LangChain:从核心链条构建到动态任务分配的实战指南04-玩转LangChain:从文档加载到高效问答系统构建的全程实战05-玩转LangChain:深度评估问答系统的三种高效方法(示例生成、手
- 人脸识别实战:使用Python OpenCV 和深度学习进行人脸识别(2)
先自我介绍一下,小编浙江大学毕业,去过华为、字节跳动等大厂,目前阿里P7深知大多数程序员,想要提升技能,往往是自己摸索成长,但自己不成体系的自学效果低效又漫长,而且极易碰到天花板技术停滞不前!因此收集整理了一份《2024年最新Python全套学习资料》,初衷也很简单,就是希望能够帮助到想自学提升又不知道该从何学起的朋友。既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课
- 【AAAI2025】计算机视觉|P-sLSTM:P-sLSTM:让LSTM在时间序列预测领域“重获新生”
论文地址:https://arxiv.org/pdf/2408.10006代码地址:https://github.com/Eleanorkong/P-sLSTM关注UPCV缝合怪,分享最计算机视觉新即插即用模块,并提供配套的论文资料与代码。https://space.bilibili.com/473764881摘要传统的循环神经网络结构,如长短期记忆神经网络(LSTM),在时间序列预测(TSF)任
- TensorFlow深度学习实战——DCGAN详解与实现
盼小辉丶
深度学习tensorflow生成对抗网络
TensorFlow深度学习实战——DCGAN详解与实现0.前言1.DCGAN架构2.构建DCGAN生成手写数字图像2.1生成器与判别器架构2.2构建DCGAN相关链接0.前言深度卷积生成对抗网络(DeepConvolutionalGenerativeAdversarialNetwork,DCGAN)是一种基于生成对抗网络(GenerativeAdversarialNetwork,GAN)的深度学
- eclipse maven
IXHONG
eclipse
eclipse中使用maven插件的时候,运行run as maven build的时候报错
-Dmaven.multiModuleProjectDirectory system propery is not set. Check $M2_HOME environment variable and mvn script match.
可以设一个环境变量M2_HOME指
- timer cancel方法的一个小实例
alleni123
多线程timer
package com.lj.timer;
import java.util.Date;
import java.util.Timer;
import java.util.TimerTask;
public class MyTimer extends TimerTask
{
private int a;
private Timer timer;
pub
- MySQL数据库在Linux下的安装
ducklsl
mysql
1.建好一个专门放置MySQL的目录
/mysql/db数据库目录
/mysql/data数据库数据文件目录
2.配置用户,添加专门的MySQL管理用户
>groupadd mysql ----添加用户组
>useradd -g mysql mysql ----在mysql用户组中添加一个mysql用户
3.配置,生成并安装MySQL
>cmake -D
- spring------>>cvc-elt.1: Cannot find the declaration of element
Array_06
springbean
将--------
<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3
- maven发布第三方jar的一些问题
cugfy
maven
maven中发布 第三方jar到nexus仓库使用的是 deploy:deploy-file命令
有许多参数,具体可查看
http://maven.apache.org/plugins/maven-deploy-plugin/deploy-file-mojo.html
以下是一个例子:
mvn deploy:deploy-file -DgroupId=xpp3
- MYSQL下载及安装
357029540
mysql
好久没有去安装过MYSQL,今天自己在安装完MYSQL过后用navicat for mysql去厕测试链接的时候出现了10061的问题,因为的的MYSQL是最新版本为5.6.24,所以下载的文件夹里没有my.ini文件,所以在网上找了很多方法还是没有找到怎么解决问题,最后看到了一篇百度经验里有这个的介绍,按照其步骤也完成了安装,在这里给大家分享下这个链接的地址
- ios TableView cell的布局
张亚雄
tableview
cell.imageView.image = [UIImage imageNamed:[imageArray objectAtIndex:[indexPath row]]];
CGSize itemSize = CGSizeMake(60, 50);
&nbs
- Java编码转义
adminjun
java编码转义
import java.io.UnsupportedEncodingException;
/**
* 转换字符串的编码
*/
public class ChangeCharset {
/** 7位ASCII字符,也叫作ISO646-US、Unicode字符集的基本拉丁块 */
public static final Strin
- Tomcat 配置和spring
aijuans
spring
简介
Tomcat启动时,先找系统变量CATALINA_BASE,如果没有,则找CATALINA_HOME。然后找这个变量所指的目录下的conf文件夹,从中读取配置文件。最重要的配置文件:server.xml 。要配置tomcat,基本上了解server.xml,context.xml和web.xml。
Server.xml -- tomcat主
- Java打印当前目录下的所有子目录和文件
ayaoxinchao
递归File
其实这个没啥技术含量,大湿们不要操笑哦,只是做一个简单的记录,简单用了一下递归算法。
import java.io.File;
/**
* @author Perlin
* @date 2014-6-30
*/
public class PrintDirectory {
public static void printDirectory(File f
- linux安装mysql出现libs报冲突解决
BigBird2012
linux
linux安装mysql出现libs报冲突解决
安装mysql出现
file /usr/share/mysql/ukrainian/errmsg.sys from install of MySQL-server-5.5.33-1.linux2.6.i386 conflicts with file from package mysql-libs-5.1.61-4.el6.i686
- jedis连接池使用实例
bijian1013
redisjedis连接池jedis
实例代码:
package com.bijian.study;
import java.util.ArrayList;
import java.util.List;
import redis.clients.jedis.Jedis;
import redis.clients.jedis.JedisPool;
import redis.clients.jedis.JedisPoo
- 关于朋友
bingyingao
朋友兴趣爱好维持
成为朋友的必要条件:
志相同,道不合,可以成为朋友。譬如马云、周星驰一个是商人,一个是影星,可谓道不同,但都很有梦想,都要在各自领域里做到最好,当他们遇到一起,互相欣赏,可以畅谈两个小时。
志不同,道相合,也可以成为朋友。譬如有时候看到两个一个成绩很好每次考试争做第一,一个成绩很差的同学是好朋友。他们志向不相同,但他
- 【Spark七十九】Spark RDD API一
bit1129
spark
aggregate
package spark.examples.rddapi
import org.apache.spark.{SparkConf, SparkContext}
//测试RDD的aggregate方法
object AggregateTest {
def main(args: Array[String]) {
val conf = new Spar
- ktap 0.1 released
bookjovi
kerneltracing
Dear,
I'm pleased to announce that ktap release v0.1, this is the first official
release of ktap project, it is expected that this release is not fully
functional or very stable and we welcome bu
- 能保存Properties文件注释的Properties工具类
BrokenDreams
properties
今天遇到一个小需求:由于java.util.Properties读取属性文件时会忽略注释,当写回去的时候,注释都没了。恰好一个项目中的配置文件会在部署后被某个Java程序修改一下,但修改了之后注释全没了,可能会给以后的参数调整带来困难。所以要解决这个问题。
&nb
- 读《研磨设计模式》-代码笔记-外观模式-Facade
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
/*
* 百度百科的定义:
* Facade(外观)模式为子系统中的各类(或结构与方法)提供一个简明一致的界面,
* 隐藏子系统的复杂性,使子系统更加容易使用。他是为子系统中的一组接口所提供的一个一致的界面
*
* 可简单地
- After Effects教程收集
cherishLC
After Effects
1、中文入门
http://study.163.com/course/courseMain.htm?courseId=730009
2、videocopilot英文入门教程(中文字幕)
http://www.youku.com/playlist_show/id_17893193.html
英文原址:
http://www.videocopilot.net/basic/
素
- Linux Apache 安装过程
crabdave
apache
Linux Apache 安装过程
下载新版本:
apr-1.4.2.tar.gz(下载网站:http://apr.apache.org/download.cgi)
apr-util-1.3.9.tar.gz(下载网站:http://apr.apache.org/download.cgi)
httpd-2.2.15.tar.gz(下载网站:http://httpd.apac
- Shell学习 之 变量赋值和引用
daizj
shell变量引用赋值
本文转自:http://www.cnblogs.com/papam/articles/1548679.html
Shell编程中,使用变量无需事先声明,同时变量名的命名须遵循如下规则:
首个字符必须为字母(a-z,A-Z)
中间不能有空格,可以使用下划线(_)
不能使用标点符号
不能使用bash里的关键字(可用help命令查看保留关键字)
需要给变量赋值时,可以这么写:
- Java SE 第一讲(Java SE入门、JDK的下载与安装、第一个Java程序、Java程序的编译与执行)
dcj3sjt126com
javajdk
Java SE 第一讲:
Java SE:Java Standard Edition
Java ME: Java Mobile Edition
Java EE:Java Enterprise Edition
Java是由Sun公司推出的(今年初被Oracle公司收购)。
收购价格:74亿美金
J2SE、J2ME、J2EE
JDK:Java Development
- YII给用户登录加上验证码
dcj3sjt126com
yii
1、在SiteController中添加如下代码:
/**
* Declares class-based actions.
*/
public function actions() {
return array(
// captcha action renders the CAPTCHA image displ
- Lucene使用说明
dyy_gusi
Lucenesearch分词器
Lucene使用说明
1、lucene简介
1.1、什么是lucene
Lucene是一个全文搜索框架,而不是应用产品。因此它并不像baidu或者googleDesktop那种拿来就能用,它只是提供了一种工具让你能实现这些产品和功能。
1.2、lucene能做什么
要回答这个问题,先要了解lucene的本质。实际
- 学习编程并不难,做到以下几点即可!
gcq511120594
数据结构编程算法
不论你是想自己设计游戏,还是开发iPhone或安卓手机上的应用,还是仅仅为了娱乐,学习编程语言都是一条必经之路。编程语言种类繁多,用途各 异,然而一旦掌握其中之一,其他的也就迎刃而解。作为初学者,你可能要先从Java或HTML开始学,一旦掌握了一门编程语言,你就发挥无穷的想象,开发 各种神奇的软件啦。
1、确定目标
学习编程语言既充满乐趣,又充满挑战。有些花费多年时间学习一门编程语言的大学生到
- Java面试十问之三:Java与C++内存回收机制的差别
HNUlanwei
javaC++finalize()堆栈内存回收
大家知道, Java 除了那 8 种基本类型以外,其他都是对象类型(又称为引用类型)的数据。 JVM 会把程序创建的对象存放在堆空间中,那什么又是堆空间呢?其实,堆( Heap)是一个运行时的数据存储区,从它可以分配大小各异的空间。一般,运行时的数据存储区有堆( Heap)和堆栈( Stack),所以要先看它们里面可以分配哪些类型的对象实体,然后才知道如何均衡使用这两种存储区。一般来说,栈中存放的
- 第二章 Nginx+Lua开发入门
jinnianshilongnian
nginxlua
Nginx入门
本文目的是学习Nginx+Lua开发,对于Nginx基本知识可以参考如下文章:
nginx启动、关闭、重启
http://www.cnblogs.com/derekchen/archive/2011/02/17/1957209.html
agentzh 的 Nginx 教程
http://openresty.org/download/agentzh-nginx-tutor
- MongoDB windows安装 基本命令
liyonghui160com
windows安装
安装目录:
D:\MongoDB\
新建目录
D:\MongoDB\data\db
4.启动进城:
cd D:\MongoDB\bin
mongod -dbpath D:\MongoDB\data\db
&n
- Linux下通过源码编译安装程序
pda158
linux
一、程序的组成部分 Linux下程序大都是由以下几部分组成: 二进制文件:也就是可以运行的程序文件 库文件:就是通常我们见到的lib目录下的文件 配置文件:这个不必多说,都知道 帮助文档:通常是我们在linux下用man命令查看的命令的文档
二、linux下程序的存放目录 linux程序的存放目录大致有三个地方: /etc, /b
- WEB开发编程的职业生涯4个阶段
shw3588
编程Web工作生活
觉得自己什么都会
2007年从学校毕业,凭借自己原创的ASP毕业设计,以为自己很厉害似的,信心满满去东莞找工作,找面试成功率确实很高,只是工资不高,但依旧无法磨灭那过分的自信,那时候什么考勤系统、什么OA系统、什么ERP,什么都觉得有信心,这样的生涯大概持续了约一年。
根本不是自己想的那样
2008年开始接触很多工作相关的东西,发现太多东西自己根本不会,都需要去学,不管是asp还是js,
- 遭遇jsonp同域下变作post请求的坑
vb2005xu
jsonp同域post
今天迁移一个站点时遇到一个坑爹问题,同一个jsonp接口在跨域时都能调用成功,但是在同域下调用虽然成功,但是数据却有问题. 此处贴出我的后端代码片段
$mi_id = htmlspecialchars(trim($_GET['mi_id ']));
$mi_cv = htmlspecialchars(trim($_GET['mi_cv ']));
贴出我前端代码片段:
$.aj