题目要求:在上一篇OpenCV----YOLOv5目标检测模型推理博客中介绍了YOLOv5目标检测模型,本次兼容YOLOv7, 构建基于面向对象设计的目标检测模型框架。
yolov7论文地址:YOLOv7 paper
yolov7项目地址:YOLOv7 github
yolov7算得上目标检测领域内速度与精度的新高度,在模型设计、重参数化、模型缩放等方面做了细致的设计。本次基于最新的YOLOv7模型进行OpenCV部署,整体框架与前面YOLOv5、YOLACT相同,只是添加了YOLOv7类方法实现。
#include
#include
#include
#include
#include
#include
#include "config.cpp"
using namespace cv;
using namespace dnn;
using namespace std;
class yolov7
{
public:
yolov7(float confThreshold, float nmsThreshold, string model_path = "model/yolov7_640x640.onnx", const int keep_top_k = 200);
yolov7(net_config& config);
void detect(Mat& frame);
private:
int inpWidth;
int inpHeight;
float confThreshold;
float nmsThreshold;
Net net;
void drawPred(float conf, int left, int top, int right, int bottom, Mat& frame, int classid);
};
yolov7::yolov7(float confThreshold, float nmsThreshold, string model_path, const int keep_top_k)
{
this->confThreshold = confThreshold;
this->nmsThreshold = nmsThreshold;
this->net = readNet(model_path);
size_t pos = model_path.find("_");
int len = model_path.length() - 6 - pos;
string hxw = model_path.substr(pos + 1, len);
pos = hxw.find("x");
string h = hxw.substr(0, pos);
len = hxw.length() - pos;
string w = hxw.substr(pos + 1, len);
this->inpHeight = stoi(h);
this->inpWidth = stoi(w);
}
yolov7::yolov7(net_config& config)
{
this->confThreshold = config.confThreshold;
this->nmsThreshold = config.nmsThreshold;
this->net = readNet(config.model_path);
size_t pos = config.model_path.find("_");
int len = config.model_path.length() - 6 - pos;
string hxw = config.model_path.substr(pos + 1, len);
pos = hxw.find("x");
string h = hxw.substr(0, pos);
len = hxw.length() - pos;
string w = hxw.substr(pos + 1, len);
this->inpHeight = stoi(h);
this->inpWidth = stoi(w);
}
void yolov7::drawPred(float conf, int left, int top, int right, int bottom, Mat& frame, int classid) // Draw the predicted bounding box
{
//Draw a rectangle displaying the bounding box
rectangle(frame, Point(left, top), Point(right, bottom), Scalar(0, 0, 255), 2);
//Get the label for the class name and its confidence
string label = format("%.2f", conf);
label = string(class_names[classid+1]) + ":" + label;
//Display the label at the top of the bounding box
int baseLine;
Size labelSize = getTextSize(label, FONT_HERSHEY_SIMPLEX, 0.5, 1, &baseLine);
top = max(top, labelSize.height);
//rectangle(frame, Point(left, top - int(1.5 * labelSize.height)), Point(left + int(1.5 * labelSize.width), top + baseLine), Scalar(0, 255, 0), FILLED);
putText(frame, label, Point(left, top), FONT_HERSHEY_SIMPLEX, 0.75, Scalar(0, 255, 0), 1);
// **** video detection **** //
// static const string kWinName = "YOLOv7 Object Detection in OpenCV";
// namedWindow(kWinName, WINDOW_NORMAL);
// imshow(kWinName, frame);
// waitKey(10);
}
void yolov7::detect(Mat& frame)
{
Mat blob = blobFromImage(frame, 1 / 255.0, Size(this->inpWidth, this->inpHeight), Scalar(0, 0, 0), true, false);
this->net.setInput(blob);
vector<Mat> outs;
this->net.forward(outs, this->net.getUnconnectedOutLayersNames());
int num_proposal = outs[0].size[0];
int nout = outs[0].size[1];
if (outs[0].dims > 2)
{
num_proposal = outs[0].size[1];
nout = outs[0].size[2];
outs[0] = outs[0].reshape(0, num_proposal);
}
/generate proposals
vector<float> confidences;
vector<Rect> boxes;
vector<int> classIds;
float ratioh = (float)frame.rows / this->inpHeight;
float ratiow = (float)frame.cols / this->inpWidth;
int n = 0, row_ind = 0; ///cx,cy,w,h,box_score,class_score
float* pdata = (float*)outs[0].data;
for (n = 0; n < num_proposal; n++) ///ÌØÕ÷ͼ³ß¶È
{
float box_score = pdata[4];
if (box_score > this->confThreshold)
{
Mat scores = outs[0].row(row_ind).colRange(5, nout);
Point classIdPoint;
double max_class_socre;
// Get the value and location of the maximum score
minMaxLoc(scores, 0, &max_class_socre, 0, &classIdPoint);
max_class_socre *= box_score;
if (max_class_socre > this->confThreshold)
{
const int class_idx = classIdPoint.x;
float cx = pdata[0] * ratiow; ///cx
float cy = pdata[1] * ratioh; ///cy
float w = pdata[2] * ratiow; ///w
float h = pdata[3] * ratioh; ///h
int left = int(cx - 0.5 * w);
int top = int(cy - 0.5 * h);
confidences.push_back((float)max_class_socre);
boxes.push_back(Rect(left, top, (int)(w), (int)(h)));
classIds.push_back(class_idx);
}
}
row_ind++;
pdata += nout;
}
// Perform non maximum suppression to eliminate redundant overlapping boxes with
// lower confidences
vector<int> indices;
NMSBoxes(boxes, confidences, this->confThreshold, this->nmsThreshold, indices);
for (size_t i = 0; i < indices.size(); ++i)
{
int idx = indices[i];
Rect box = boxes[idx];
this->drawPred(confidences[idx], box.x, box.y,
box.x + box.width, box.y + box.height, frame, classIds[idx]);
}
}
// **** unit test ****//
// int main()
// {
// yolov7 net(0.3, 0.5, "model/yolov7_640x640.onnx");
// string imgpath = "inference/bus.jpg";
// Mat srcimg = imread(imgpath);
// net.detect(srcimg);
// static const string kWinName = "Deep learning object detection in OpenCV";
// namedWindow(kWinName, WINDOW_NORMAL);
// imshow(kWinName, srcimg);
// waitKey(0);
// destroyAllWindows();
// }