Deeplab_v2+VOC数据集

概述

Deeplab系列,是图像语意分割的经典之作,用深度学习的方法实现图像分割,绕不过系统学习Deeplab系列,而学习的最快途径就是先把demo跑起来,之后再去细读文献和代码。
本博客主要是基于v2版本的deeplab,使用VGG16模型,在VOC2012数据集上进行测试!
参考了很多博客的精华,但是有些博客记录的不是很全,核心资料就是参看官网:deeplab_v2

我把我的踩坑过程记录如下,让自己再熟悉一遍。记录按照demo运行顺序进行:

收集处理数据:

文章中的数据集由两部分组成,已经有人写好脚本,可以直接从网上拉下来,这样就不去网页上自己手动搜索了。
下载脚本如下:

# 这里建议自己建立一个data文件夹,存放相关数据

# augmented PASCAL VOC     #增强数据集
mkdir -p ~/DL_dataset
cd ~/DL_dataset                      #save datasets 为$DATASETS
wget http://www.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/semantic_contours/benchmark.tgz # 1.3 GB
tar -zxvf benchmark.tgz
mv benchmark_RELEASE VOC_aug

# original PASCAL VOC 2012   #原始数据集
wget http://host.robots.ox.ac.uk/pascal/VOC/voc2012/VOCtrainval_11-May-2012.tar # 2 GB
tar -xvf VOCtrainval_11-May-2012.tar
mv VOCdevkit/VOC2012 VOC2012_orig && rm -r VOCdevkit

数据转换 :

  • 因为pascal voc2012增强数据集的label是mat格式的文件,所以我们需要把mat格式的label转为png格式的图片,脚本如下:
cd ./DL_dataset/VOC_aug/dataset
if [ ! -d cls_png  ];
then
    mkdir cls_png
else
    echo dir exist
fi
cd ../../../
python3 ./mat2png.py ./DL_dataset/VOC_aug/dataset/cls ./DL_dataset/VOC_aug/dataset/cls_png
  • pascal voc2012原始数据集的label为三通道RGB图像,但是caffe最后一层softmax loss 层只能识别一通道的label,所以此处我们需要对原始数据集的label进行降维,脚本如下:
cd ./DL_dataset/VOC2012_orig

if [ ! -d SegmentationClass_1D  ];
then
    mkdir SegmentationClass_1D
else
    echo dir exist
fi

cd ../../
python3 convert_labels.py ./DL_dataset/VOC2012_orig/SegmentationClass/ ./DL_dataset/VOC2012_orig/ImageSets/Segmentation/trainval.txt ./DL_dataset/VOC2012_orig/SegmentationClass_1D/

为了方便直接使用图片,我们将图片两个图片源合并,且将文件夹改成train.txt里要求的形式:
Deeplab_v2+VOC数据集_第1张图片
脚本如下:

cp ./DL_dataset/VOC2012_orig/SegmentationClass_1D/* ./DL_dataset/VOC_aug/dataset/cls_png
cp ./DL_dataset/VOC2012_orig/JPEGImages/* ./DL_dataset/VOC_aug/dataset/img/

echo "复制完毕"

cd ./DL_dataset/VOC_aug/dataset
mv ./img ./JPEGImages
mv ./cls_png ./SegmentationClassAug

echo "文件夹改名"
echo "查看JPEGImages文件数量:"
cd ./JPEGImages
ls -l | grep "^-" | wc -l

echo "查看SegmentationClassAug文件数量::"
cd ../SegmentationClassAug
ls -l | grep "^-" | wc -l

到此处,在 /DL_dataset/VOC_aug/dataset文件夹中

  • images数据集的文件名为:JPEGImages ,jpg图片数由5073变为17125
  • labels数据集文件名为:cls_png ,png图片数由11355变为12031
    数据收集工作也到此结束。

数据收集完之后第二步,就是建立一些文件夹,开始一些配置工作,之后就可以把数据扔进caffe里训练了。

配置环境

参看官方文档:
Deeplab_v2+VOC数据集_第2张图片
1、用来运行caffe的脚本和数据list都可以直接下载
2、难点是安装matio

安装matio:
第一步下载:
官网链接
在这里插入图片描述
下载下来发现是7z压缩包
第二步解压:

sudo apt-get install p7zip    
7z x matio-1.5.12.7z -r -o/home/xx   //解压到目标文件夹,若遇到需要下载完整7z提示,按提示下载即可。
sudo apt-get install p7zip-full

第三步安装:

cd matio-1.5.12
./configure   //如果这一句不能用的话用 bash configure  代替
make
make check
make install

会出现很多类似错误:

*xxxx/Depends/matio-1.5.12/src’ //报错文件目录 /bin/sh …/libtool --tag=CC --mode=compile mipsel-linux-gcc -DHAVE_CONFIG_H -I. -I… -I…/include -I…/include -O20 -Wall -ffast-math -fsigned-char -g -O2 -MT framing.lo -MD -MP -MF .deps/framing.Tpo -c -o framing.lo framing.c
…/libtool: 1564: …/libtool: preserve_args+= --tag CC: not found
…/libtool: 1: eval: base_compile+= mipsel-linux-gcc: not found
…/libtool: 1: eval: base_compile+= -DHAVE_CONFIG_H: not found

找到src文件里的makefile文件,定位到SHELL变量定义处的/bin/sh,改为/bin/bash后重新编译
这样的文件夹有很多:类似在"src", “tools” , “test” 等文件夹处均遇到上面错误,修改对应的Makefile文件即可。
接下来就是配置环境,创建文件夹,及编译caffe了。
参考官网:
Deeplab_v2+VOC数据集_第3张图片
第一步:创建文件夹、拉取deep_lab源码,一个脚本搞定:

#!/bin/bash

mkdir deep_lab
cd deep_lab
git clone https://bitbucket.org/aquariusjay/deeplab-public-ver2.git

echo "源码拉取成功"
cd ..
mkdir -p ./deep_lab/exper/voc12/config/deeplab_largeFOV
mkdir -p ./deep_lab/exper/voc12/features/labels
mkdir -p ./deep_lab/exper/voc12/features2/labels
mkdir -p ./deep_lab/exper/voc12/list
mkdir -p ./deep_lab/exper/voc12/model/deeplab_largeFOV
mkdir -p ./deep_lab/exper/voc12/log
mkdir -p ./deep_lab/exper/voc12/res

echo "创建文件夹成功,用来存放txt,log,model等内容"

第二步:拉取配置文件prototxt和训练模型分别放进各自文件夹,脚本如下:

#!/bin/bash
echo "正在下载..."
wget http://liangchiehchen.com/projects/released/deeplab_aspp_vgg16/prototxt_and_model.zip
unzip prototxt_and_model.zip
echo "解压完毕"

mv *.prototxt ./deep_lab/exper/voc12/config/deeplab_largeFOV
mv *caffemodel ./deep_lab/exper/voc12/model/deeplab_largeFOV

rm -rf *.prototxt
rm -rf *caffemodel

echo "完成"

第三步:编译caffe
和BVLC版本一样,对DeepLab的caffe进行编译,我喜欢用cmake
在使用cmake之前,先检查Cmakelist的配置,我需要选择python3编译

#!/bin/bash
cd ./deep_lab/deeplab_public_ver2
mkdir build
cd build
cmake ..
make -j8
make pycafef
make test

echo "完成"

这样编译会出不少问题,主要参考编译错误总结都能顺利解决。
比如:

1、./include/caffe/common.cuh(9): error: function “atomicAdd(double *, double)” has already been defined

原因是CUDA 8.0 提供了对atomicAdd函数的定义,但atomicAdd在之前的CUDA toolkit中并未出现,因此一些程序自定义了atomicAdd函数。
解决方法:打开./include/caffe/common.cuh文件,在atomicAdd前添加宏判断即可。
如下:

#if !defined(__CUDA_ARCH__) || __CUDA_ARCH__ >= 600 
#else
   static __inline__ __device__ double atomicAdd(double* address, double val) 
   { 
      ...
   } 
#endif

2、cuDNN v5环境会出现类似下面的接口错误:

./include/caffe/util/cudnn.hpp: In function ‘void caffe::cudnn::createPoolingDesc(cudnnPoolingStruct**, caffe::PoolingParameter_PoolMethod, cudnnPoolingMode_t*, int, int, int, int, int, int)’:
./include/caffe/util/cudnn.hpp:127:41: error: too few arguments to function ‘cudnnStatus_t cudnnSetPooling2dDescriptor(cudnnPoolingDescriptor_t, cudnnPoolingMode_t, cudnnNanPropagation_t, int, int, int, int, int, int)’
         pad_h, pad_w, stride_h, stride_w));

这是由于所使用的cuDNN版本不一致的导致的,作者配置环境是cuDNN 4.0,但是5.0版本后的cuDNN接口有所变化。

解决方法 :将以下几个文件用最新BVLC版本的caffe对应文件替换并重新编译

./include/caffe/util/cudnn.hpp
./include/caffe/layers/cudnn_conv_layer.hpp
./include/caffe/layers/cudnn_relu_layer.hpp
./include/caffe/layers/cudnn_sigmoid_layer.hpp
./include/caffe/layers/cudnn_tanh_layer.hpp

./src/caffe/layers/cudnn_conv_layer.cpp
./src/caffe/layers/cudnn_conv_layer.cu
./src/caffe/layers/cudnn_relu_layer.cpp
./src/caffe/layers/cudnn_relu_layer.cu
./src/caffe/layers/cudnn_sigmoid_layer.cpp
./src/caffe/layers/cudnn_sigmoid_layer.cu
./src/caffe/layers/cudnn_tanh_layer.cpp
./src/caffe/layers/cudnn_tanh_layer.cu

3、使用cmake编译时会遇到以下错误

../lib/libcaffe.so.1.0.0-rc3: undefined reference to `Mat_VarFree'
../lib/libcaffe.so.1.0.0-rc3: undefined reference to `Mat_VarReadDataLinear'
../lib/libcaffe.so.1.0.0-rc3: undefined reference to `Mat_Open'
../lib/libcaffe.so.1.0.0-rc3: undefined reference to `Mat_VarCreate'
../lib/libcaffe.so.1.0.0-rc3: undefined reference to `Mat_CreateVer'
../lib/libcaffe.so.1.0.0-rc3: undefined reference to `Mat_VarWrite'
../lib/libcaffe.so.1.0.0-rc3: undefined reference to `Mat_VarReadInfo'
../lib/libcaffe.so.1.0.0-rc3: undefined reference to `Mat_Close'

解决方法:
下载FindMATIO.cmake.zip文件,解压缩后拷贝到./cmake/Modules目录中。
文件下载路径
并添加以下代码至./cmake/Dependencies.cmake文件中

 # ---[ MATIO--add
find_package(MATIO REQUIRED)
include_directories(${MATIO_INCLUDE_DIR})
list(APPEND Caffe_LINKER_LIBS ${MATIO_LIBRARIES})

这样基本能正常编译caffe了。
以上基本就是整个环境配置的全过程,接下来就是开始把deeplab_v2跑起来了。

编译deeplab_v2

之前提到过编译caffe的脚本可以直接下载,但是需要才能连上:
Deeplab_v2+VOC数据集_第4张图片
我下载下来的文件如下:包括三个sh和一个sed,放在了voc12文件夹里,接下来就是修改run_pascal.sh里的一些文件地址,然后运行即可。
还有一个list,需要放进list文件夹:
在这里插入图片描述
Deeplab_v2+VOC数据集_第5张图片
Deeplab_v2+VOC数据集_第6张图片
我的文件如下:

#!/bin/sh

## MODIFY PATH for YOUR SETTING
ROOT_DIR=~/Documents/data/deeplab/DL_dataset    #此处为voc数据集主路径

CAFFE_DIR=../deeplab-public-ver2                           #此处为官方caffe源码文件夹
CAFFE_BIN=${CAFFE_DIR}/build/tools/caffe          #需要修改源文件    

EXP=.

if [ "${EXP}" = "." ]; then
    NUM_LABELS=21
    DATA_ROOT=${ROOT_DIR}/VOC_aug/dataset/
else
    NUM_LABELS=0
    echo "Wrong exp name"
fi
 

## Specify which model to train
########### voc12 ################
NET_ID=deeplab_largeFOV


## Variables used for weakly or semi-supervisedly training
#TRAIN_SET_SUFFIX=
TRAIN_SET_SUFFIX=_aug

#TRAIN_SET_STRONG=train
#TRAIN_SET_STRONG=train200
#TRAIN_SET_STRONG=train500
#TRAIN_SET_STRONG=train1000
#TRAIN_SET_STRONG=train750

#TRAIN_SET_WEAK_LEN=5000

DEV_ID=0

#####

## Create dirs

CONFIG_DIR=${EXP}/config/${NET_ID}
MODEL_DIR=${EXP}/model/${NET_ID}
mkdir -p ${MODEL_DIR}
LOG_DIR=${EXP}/log/${NET_ID}
mkdir -p ${LOG_DIR}
export GLOG_log_dir=${LOG_DIR}

## Run

RUN_TRAIN=1
RUN_TEST=0
RUN_TRAIN2=0
RUN_TEST2=0

## Training #1 (on train_aug)

if [ ${RUN_TRAIN} -eq 1 ]; then
    #
    LIST_DIR=${EXP}/list
    TRAIN_SET=train${TRAIN_SET_SUFFIX}
    if [ -z ${TRAIN_SET_WEAK_LEN} ]; then
				TRAIN_SET_WEAK=${TRAIN_SET}_diff_${TRAIN_SET_STRONG}
				comm -3 ${LIST_DIR}/${TRAIN_SET}.txt ${LIST_DIR}/${TRAIN_SET_STRONG}.txt > ${LIST_DIR}/${TRAIN_SET_WEAK}.txt
    else
				TRAIN_SET_WEAK=${TRAIN_SET}_diff_${TRAIN_SET_STRONG}_head${TRAIN_SET_WEAK_LEN}
				comm -3 ${LIST_DIR}/${TRAIN_SET}.txt ${LIST_DIR}/${TRAIN_SET_STRONG}.txt | head -n ${TRAIN_SET_WEAK_LEN} > ${LIST_DIR}/${TRAIN_SET_WEAK}.txt
    fi
    #
    MODEL=${EXP}/model/${NET_ID}/init.caffemodel
    #
    echo Training net ${EXP}/${NET_ID}
    for pname in train solver; do
				sed "$(eval echo $(cat sub.sed))" \
						${CONFIG_DIR}/${pname}.prototxt > ${CONFIG_DIR}/${pname}_${TRAIN_SET}.prototxt
    done
        CMD="${CAFFE_BIN} train \
         --solver=${CONFIG_DIR}/solver_${TRAIN_SET}.prototxt \
         --gpu=${DEV_ID}"
		if [ -f ${MODEL} ]; then
				CMD="${CMD} --weights=${MODEL}"
		fi
		echo Running ${CMD} && ${CMD}
fi

## Test #1 specification (on val or test)

if [ ${RUN_TEST} -eq 1 ]; then
    #
    for TEST_SET in val; do
				TEST_ITER=`cat ${EXP}/list/${TEST_SET}.txt | wc -l`
				MODEL=${EXP}/model/${NET_ID}/test.caffemodel
				if [ ! -f ${MODEL} ]; then
						MODEL=`ls -t ${EXP}/model/${NET_ID}/train_iter_*.caffemodel | head -n 1`
				fi
				#
				echo Testing net ${EXP}/${NET_ID}
				FEATURE_DIR=${EXP}/features/${NET_ID}
				mkdir -p ${FEATURE_DIR}/${TEST_SET}/fc8
        mkdir -p ${FEATURE_DIR}/${TEST_SET}/fc9
				mkdir -p ${FEATURE_DIR}/${TEST_SET}/seg_score
				sed "$(eval echo $(cat sub.sed))" \
						${CONFIG_DIR}/test.prototxt > ${CONFIG_DIR}/test_${TEST_SET}.prototxt
				CMD="${CAFFE_BIN} test \
             --model=${CONFIG_DIR}/test_${TEST_SET}.prototxt \
             --weights=${MODEL} \
             --gpu=${DEV_ID} \
             --iterations=${TEST_ITER}"
				echo Running ${CMD} && ${CMD}
    done
fi

## Training #2 (finetune on trainval_aug)

if [ ${RUN_TRAIN2} -eq 1 ]; then
    #
    LIST_DIR=${EXP}/list
    TRAIN_SET=trainval${TRAIN_SET_SUFFIX}
    if [ -z ${TRAIN_SET_WEAK_LEN} ]; then
				TRAIN_SET_WEAK=${TRAIN_SET}_diff_${TRAIN_SET_STRONG}
				comm -3 ${LIST_DIR}/${TRAIN_SET}.txt ${LIST_DIR}/${TRAIN_SET_STRONG}.txt > ${LIST_DIR}/${TRAIN_SET_WEAK}.txt
    else
				TRAIN_SET_WEAK=${TRAIN_SET}_diff_${TRAIN_SET_STRONG}_head${TRAIN_SET_WEAK_LEN}
				comm -3 ${LIST_DIR}/${TRAIN_SET}.txt ${LIST_DIR}/${TRAIN_SET_STRONG}.txt | head -n ${TRAIN_SET_WEAK_LEN} > ${LIST_DIR}/${TRAIN_SET_WEAK}.txt
    fi
    #
    MODEL=${EXP}/model/${NET_ID}/init2.caffemodel
    if [ ! -f ${MODEL} ]; then
				MODEL=`ls -t ${EXP}/model/${NET_ID}/train_iter_*.caffemodel | head -n 1`
    fi
    #
    echo Training2 net ${EXP}/${NET_ID}
    for pname in train solver2; do
				sed "$(eval echo $(cat sub.sed))" \
						${CONFIG_DIR}/${pname}.prototxt > ${CONFIG_DIR}/${pname}_${TRAIN_SET}.prototxt
    done
    CMD="${CAFFE_BIN} train \
         --solver=${CONFIG_DIR}/solver2_${TRAIN_SET}.prototxt \
         --weights=${MODEL} \
         --gpu=${DEV_ID}"
		echo Running ${CMD} && ${CMD}
fi

## Test #2 on official test set

if [ ${RUN_TEST2} -eq 1 ]; then
    #
    for TEST_SET in val test; do
				TEST_ITER=`cat ${EXP}/list/${TEST_SET}.txt | wc -l`
				MODEL=${EXP}/model/${NET_ID}/test2.caffemodel
				if [ ! -f ${MODEL} ]; then
						MODEL=`ls -t ${EXP}/model/${NET_ID}/train2_iter_*.caffemodel | head -n 1`
				fi
				#
				echo Testing2 net ${EXP}/${NET_ID}
				FEATURE_DIR=${EXP}/features2/${NET_ID}
				mkdir -p ${FEATURE_DIR}/${TEST_SET}/fc8
				mkdir -p ${FEATURE_DIR}/${TEST_SET}/crf
				sed "$(eval echo $(cat sub.sed))" \
						${CONFIG_DIR}/test.prototxt > ${CONFIG_DIR}/test_${TEST_SET}.prototxt
				CMD="${CAFFE_BIN} test \
             --model=${CONFIG_DIR}/test_${TEST_SET}.prototxt \
             --weights=${MODEL} \
             --gpu=${DEV_ID} \
             --iterations=${TEST_ITER}"
				echo Running ${CMD} && ${CMD}
    done
fi

详细文件可从github上获得,包括脚本和py文件。
欢迎关注个人公号:ThuerStory,讲述毕业后的带娃生活。

你可能感兴趣的:(Deeplab_v2+VOC数据集)