四元数的用途和好处我就不多说了。
之前在网上找旋转矩阵和四元数相互转换的代码,找了几个都不大对劲,正反算算不过来,最后还是从osg源码里贴出来的这个,应该没什么问题,这里小bs一下wiki,wiki上给的那个互换方法ms是错的。
这里给一个链接,Matrix
and Quaternion FAQ
http://www.flipcode.com/documents/matrfaq.html
以下是源文件:
#include
#include
using
namespace std;
typedef double ValType;
struct Quat;
struct
Matrix;
struct Quat {
ValType _v[4];//x, y, z, w
/// Length of
the quaternion = sqrt( vec . vec )
ValType length() const
{
return
sqrt( _v[0]*_v[0] + _v[1]*_v[1] + _v[2]*_v[2] + _v[3]*_v[3]);
}
///
Length of the quaternion = vec . vec
ValType length2() const
{
return _v[0]*_v[0] + _v[1]*_v[1] + _v[2]*_v[2] +
_v[3]*_v[3];
}
};
struct Matrix {
ValType
_mat[3][3];
};
#define QX q._v[0]
#define QY q._v[1]
#define QZ
q._v[2]
#define QW q._v[3]
void Quat2Matrix(const Quat& q,
Matrix& m)
{
double length2 = q.length2();
if
(fabs(length2) <= std::numeric_limits::min())
{
m._mat[0][0] = 0.0; m._mat[1][0] = 0.0; m._mat[2][0] =
0.0;
m._mat[0][1] = 0.0; m._mat[1][1] = 0.0; m._mat[2][1] =
0.0;
m._mat[0][2] = 0.0; m._mat[1][2] = 0.0; m._mat[2][2] =
0.0;
}
else
{
double rlength2;
//
normalize quat if required.
// We can avoid the expensive sqrt in
this case since all 'coefficients' below are products of two q
components.
// That is a square of a square root, so it is possible
to avoid that
if (length2 != 1.0)
{
rlength2 = 2.0/length2;
}
else
{
rlength2 = 2.0;
}
// Source: Gamasutra,
Rotating Objects Using Quaternions
//
//http://www.gamasutra.com/features/19980703/quaternions_01.htm
double wx, wy, wz, xx, yy, yz, xy, xz, zz, x2, y2, z2;
// calculate coefficients
x2 = rlength2*QX;
y2
= rlength2*QY;
z2 = rlength2*QZ;
xx = QX *
x2;
xy = QX * y2;
xz = QX * z2;
yy
= QY * y2;
yz = QY * z2;
zz = QZ * z2;
wx = QW * x2;
wy = QW * y2;
wz = QW *
z2;
// Note. Gamasutra gets the matrix assignments
inverted, resulting
// in left-handed rotations, which is contrary to
OpenGL and OSG's
// methodology. The matrix assignment has been
altered in the next
// few lines of code to do the right
thing.
// Don Burns - Oct 13, 2001
m._mat[0][0] = 1.0 -
(yy + zz);
m._mat[1][0] = xy - wz;
m._mat[2][0] = xz +
wy;
m._mat[0][1] = xy + wz;
m._mat[1][1] = 1.0 - (xx + zz);
m._mat[2][1] = yz - wx;
m._mat[0][2] = xz - wy;
m._mat[1][2] = yz +
wx;
m._mat[2][2] = 1.0 - (xx + yy);
}
}
void
Matrix2Quat(const Matrix& m, Quat& q)
{
ValType s;
ValType tq[4];
int i, j;
// Use tq to store the largest
trace
tq[0] = 1 + m._mat[0][0]+m._mat[1][1]+m._mat[2][2];
tq[1] =
1 + m._mat[0][0]-m._mat[1][1]-m._mat[2][2];
tq[2] = 1 -
m._mat[0][0]+m._mat[1][1]-m._mat[2][2];
tq[3] = 1 -
m._mat[0][0]-m._mat[1][1]+m._mat[2][2];
// Find the maximum (could
also use stacked if's later)
j = 0;
for(i=1;i<4;i++) j =
(tq[i]>tq[j])? i : j;
// check the diagonal
if
(j==0)
{
/* perform instant calculation */
QW =
tq[0];
QX = m._mat[1][2]-m._mat[2][1];
QY =
m._mat[2][0]-m._mat[0][2];
QZ = m._mat[0][1]-m._mat[1][0];
}
else if (j==1)
{
QW =
m._mat[1][2]-m._mat[2][1];
QX = tq[1];
QY =
m._mat[0][1]+m._mat[1][0];
QZ = m._mat[2][0]+m._mat[0][2];
}
else if (j==2)
{
QW =
m._mat[2][0]-m._mat[0][2];
QX = m._mat[0][1]+m._mat[1][0];
QY = tq[2];
QZ = m._mat[1][2]+m._mat[2][1];
}
else /*
if (j==3) */
{
QW = m._mat[0][1]-m._mat[1][0];
QX =
m._mat[2][0]+m._mat[0][2];
QY = m._mat[1][2]+m._mat[2][1];
QZ = tq[3];
}
s = sqrt(0.25/tq[j]);
QW *= s;
QX
*= s;
QY *= s;
QZ *= s;
}
void printMatrix(const
Matrix& r, string name)
{
cout<
"<
cout<
"<
"<
cout<
"<
"<
cout<
"<
"<
cout<
}
void
printQuat(const Quat& q, string name)
{
cout<
"<
"<
cout<
"<
"<
cout<
}
int
main()
{
ValType phi, omiga, kappa;
phi = 1.32148229302237 ; omiga
= 0.626224465189316 ; kappa = -1.4092143985971;
ValType
a1,a2,a3,b1,b2,b3,c1,c2,c3;
a1 = cos(phi)*cos(kappa) -
sin(phi)*sin(omiga)*sin(kappa);
a2 = -cos(phi)*sin(kappa) -
sin(phi)*sin(omiga)*cos(kappa);
a3 = -sin(phi)*cos(omiga);
b1
= cos(omiga)*sin(kappa);
b2 = cos(omiga)*cos(kappa);
b3 =
-sin(omiga);
c1 = sin(phi)*cos(kappa) +
cos(phi)*sin(omiga)*sin(kappa);
c2 = -sin(phi)*sin(kappa) +
cos(phi)*sin(omiga)*cos(kappa);
c3 = cos(phi)*cos(omiga);
Matrix r;
r._mat[0][0] = a1;
r._mat[0][1] = a2;
r._mat[0][2] =
a3;
r._mat[1][0] = b1;
r._mat[1][1] = b2;
r._mat[1][2] =
b3;
r._mat[2][0] = c1;
r._mat[2][1] = c2;
r._mat[2][2] =
c3;
printMatrix(r, "r");
//
Quat
q;
Matrix2Quat(r, q);
printQuat(q, "q");
Matrix
_r;
Quat2Matrix(q, _r);
printMatrix(_r, "_r");
system("pause");
return 0;
}