- 【Python深度学习】零基础掌握Pytorch Pooling layers nn.MaxPool方法
Mr数据杨
Python深度学习python深度学习pytorch
在深度学习的世界中,MaxPooling是一种关键的操作,用于降低数据的维度并保留重要特征。这就像是从一堆照片中挑选出最能代表某个场景的那张。PyTorch提供了多种MaxPooling层,包括nn.MaxPool1d、nn.MaxPool2d和nn.MaxPool3d,它们分别适用于不同维度的数据处理。如果处理的是声音信号(一维数据),就会用到nn.MaxPool1d。而处理图像(二维数据)时,
- RTK_ROS_导航(1): GNSS里程计
酸奶可乐
RTK导航ROSROSRTK里程计
目录1.RTK配置2.ROS驱动3.RTK融合IMU实现里程计4.纯RTK的定位信息5.即将实现导航,正在更新中,如果遇到问题,欢迎CSDN讨论...1.RTK配置4GCORS+4G网络+户外有信号,不能实现RTK,就恢复出厂设置输出报文信息包含(一般需要三个同时打开):GAPPA:包含位置信息GPVTG:包含速度信息GPHDT:包含定向的朝向信息扩展内容:NMEA的解析资料:http://byn
- ROS:录制相机、IMU、GNSS等设备数据
吃水果不削皮
视觉组合导航ROSVIO
文章目录简介录制数据️准备工作录制相机录制串口设备录制数据项目地址简介在ROS中,录制传感器数据(如相机、IMU等)常使用rosbag工具,它可以将ROS话题消息保存为.bag文件,供后续回放或分析。本文使用jetson-tx2核心板作为录制平台,录制微光相机数据和六轴IMU数据,用于相机标定、IMU标定、相机-IMU联合标定与VIO轨迹分析。相机标定详见:相机-IMU联合标定:相机标定IMU标定
- python接收_MT5 与 PYTHON 的集成:接收和发送数据
James Swineson
python接收
为什么要把MQL5与Python集成?全方位的数据处理需要大量工具,并且经常超出单一应用程序的功能沙箱。专用编程语言正在用于处理和分析数据,统计和机器学习。Python是数据处理的主要编程语言之一。一个非常有效的解决方案是利用语言的力量并包含函数库来开发交易系统。在两个或更多个程序之间实现交互存在众多不同的解决方案。套接字是最快速、最灵活的解决方案之一。网络套接字是计算机网络上进程间通信的端点。M
- python 多进程多线程编程
NurDroid
python网络java
1.Python多进程编程基础1.1多进程概念与原理多进程编程是指一个程序运行时启动多个进程来完成任务。每个进程拥有独立的内存空间,互不干扰,可以同时运行,充分利用多核CPU的计算能力。例如,在一个数据处理程序中,可以启动多个进程分别处理不同的数据块,从而加快处理速度。Python中的多进程编程主要通过multiprocessing模块实现,它提供了丰富的接口来创建和管理进程。1.2multipr
- 基于GD32F4XX的CAN总线消息处理系统
森焱森
c语言架构驱动开发单片机算法
基于GD32F4XX的CAN总线消息处理系统在嵌入式系统开发中,CAN总线广泛应用于汽车、工业自动化等领域。高效处理CAN总线数据对于系统性能至关重要。本文介绍基于GD32F4XX的CAN总线消息接收和解析系统,利用环形缓冲区和函数指针实现高效、灵活的数据处理。核心实现-环形缓冲区环形缓冲区用于暂存接收到的CAN消息,防止数据丢失。支持两种模式:正常模式(缓冲区满则丢弃新数据)和覆盖模式(缓冲区满
- 自学Java怎么入门
Java鼠鼠吖
java开发语言
自学Java其实没有想象中那么难,只要找对方法,循序渐进地学习,很快就能上手。下面我结合自己的经验,给你整理一条清晰的学习路径,咱们一步步来。一、先了解Java能做什么在开始之前,建议你先看看Java都能用在哪些地方。比如开发企业级系统、Android应用、大数据处理等等。这样你就能明白为什么要学它,也更有动力。Java最大的特点就是"一次编写,到处运行",这要归功于JVM虚拟机。二、准备好学习环
- Flink Oracle CDC Connector详解
24k小善
flinkjava大数据
1.FlinkOracleCDCConnector核心功能功能模块描述实时数据捕获实时捕捉Oracle数据库中的DML操作(INSERT,UPDATE,DELETE)。Schema变更支持支持部分DDL操作的检测(如表结构变更)。端到端一致性确保数据从Oracle到Flink的传输过程中的完整性和一致性。可扩展性支持高吞吐量和大规模数据处理需求。容错机制具备断点续传能力,确保在中断后能够从上次的位
- MIAOYUN | 每周AI新鲜事儿(06.14-06.20)
人工智能算法机器学习深度学习
紧跟技术浪潮,洞察行业未来,MIAOYUN《每周AI新鲜事儿》,为您精选全球AI领域的最新动态,涵盖AI技术突破、行业动态、趋势发展、前沿政策与学术研究,带您走在智能时代前沿,一起来回顾本周发生的AI新鲜事儿吧!AI开源大模型腾讯混元3D2.1大模型全链路开源6月14日,在CVPR2025(计算机视觉领域顶会之一)上,腾讯混元3D2.1大模型对外全链路开源,其模型权重及架构、训练代码、数据处理流程
- 蜂鸟视图蜂鸟云平台更新概述:主题、制图、数据融合、云平台登录、服务接口及开发者中心
摘要蜂鸟云平台作为一个全面的地图与数据处理平台,提供了多个功能模块支持各种应用场景。本文详细介绍了蜂鸟云平台近期的更新,包括主题设计器、制图工具、数据融合模块、云平台登录优化、平台服务接口以及开发者中心的更新内容。通过对各项更新的分析,本文旨在展示这些改进如何提升系统的稳定性、性能以及用户体验,为开发者与用户提供更加便捷高效的解决方案。关键词蜂鸟云平台;主题设计器;制图工具;数据融合;用户体验;平
- 降低20%成本暴雨定制化液冷系统落地
暴雨信息凭借多年液冷设计及实施经验,帮助某知名自动驾驶企业完成了车端算力设备和后端数据中心的液冷改造升级,进一步提升了其车端实时数据处理能力及后端模型训练优化效率。但在后期持续运维过程中,由于测试中心尚未配备液冷系统,只能依赖外接散热器和水泵来进行液冷设备的测试与故障排除,不仅噪音大还存在较大的冷却液泄漏风险。为此,客户期望我们帮助其建立起一套规范化的液冷测试系统,以解决当下困境。暴雨信息专业技术
- 历史轨迹组件性能优化方案
欧阳天羲
性能优化前端
针对历史轨迹组件的性能优化,可从数据处理、渲染策略、内存管理和交互优化四个方面入手。以下是具体的优化方向和实现方案:一、数据处理优化1.轨迹数据抽稀算法原理:在不影响轨迹整体形状的前提下,减少轨迹点数量实现方案:采用Douglas-Peucker算法实现轨迹抽稀提供抽稀精度参数,根据地图缩放级别动态调整示例代码://轨迹抽稀函数exportconstsimplifyTrajectory=(poin
- 大数据领域数据工程的消息中间件选型
大数据洞察
大数据与AI人工智能大数据ai
大数据领域数据工程的消息中间件选型关键词:消息中间件、数据工程、大数据处理、选型标准、分布式系统、实时数据流、可靠性保障摘要:在大数据领域的数据工程实践中,消息中间件是构建高可靠、高可扩展数据管道的核心组件。本文从技术架构、功能需求、应用场景等维度,系统解析消息中间件选型的关键要素。通过对比Kafka、Pulsar、RabbitMQ、RocketMQ等主流中间件的技术特性,结合数学模型分析吞吐量、
- 分布式存储系统的设计原理
逻辑混乱的哲学家
分布式
```html分布式存储系统的设计原理分布式存储系统的设计原理随着互联网的快速发展,数据量呈指数级增长,传统的单机存储系统已经无法满足大规模数据处理的需求。在这种背景下,分布式存储系统应运而生。分布式存储系统通过将数据分散存储在多台服务器上,不仅提高了系统的可靠性、扩展性和性能,还降低了单点故障的风险。本文将探讨分布式存储系统的核心设计原理。数据分片与负载均衡分布式存储系统的一个关键特性是数据分片
- Python 解析 Kafka 消息队列的高吞吐架构
```htmlPython解析Kafka消息队列的高吞吐架构Python解析Kafka消息队列的高吞吐架构Kafka是一个分布式、高吞吐量的消息队列系统,广泛应用于实时数据处理和流式计算场景。Python作为一种灵活且易于使用的编程语言,在与Kafka集成时提供了多种库支持,例如kafka-python和confluent-kafka。本文将探讨如何使用Python构建高效的Kafka消息队列应用
- 合规视角下银行智能客服风险防控
AI 智能服务
智能客服人工智能AIGC数据库chatgpt
1.AI驱动金融变革的政策与技术背景政策导向:我国《新一代人工智能发展规划》明确提出发展智能金融,要求:构建金融大数据平台,提升多媒体数据处理能力;创新智能金融产品与服务形态;推广智能客服、监控等技术应用;建立智能风控预警体系。技术支撑:云计算、大数据技术成熟为AI发展奠定了基础。深度学习算法的突破则引爆了本轮AI浪潮,显著提升了复杂任务处理精度,进而推动了计算机视觉、机器学习、自然语言处理(NL
- 初见GREAT-MSF
Lyre丶
GNSS/INS学习经验分享笔记
初见GREAT-MSF省流版代码获取与环境配置探路解决glfw3解决找不到动态链接库跑测试样例在Linux下编译运行GREAT-MSF的记录GREAT(GNSS+REsearch,ApplicationandTeaching)软件由武汉大学测绘学院设计开发,是一个用于空间大地测量数据处理、精密定位和定轨以及多源融合导航的综合性软件平台。GREAT-MSF是GREAT软件中的一个重要模块,主要用于多
- 第3篇:Gin的请求处理——获取客户端数据(Gin文件上传,接收JSON数据)
GO兔
gingolang后端
引言:Context是Gin的"瑞士军刀"在Gin框架中,Context就像一把多功能的瑞士军刀,封装了所有与请求相关的操作。新手开发者常犯的错误是只把它当作参数传递的工具,却忽略了它强大的数据处理能力。想象一个场景:用户提交了一份包含个人信息的表单,上传了头像,并通过URL参数指定了显示格式。你的任务是验证这些数据、处理Gin文件上传、返回格式化响应——这一切都离不开Context的高效运用。本
- Flink部署与应用——Flink集群模式
黄雪超
从0开始学Flinkflink大数据
Flink集群模式在大数据处理领域,ApacheFlink凭借其卓越的流批一体化处理能力,成为众多企业的首选框架。而Flink集群模式的选择与运用,对于充分发挥Flink的性能优势、满足不同业务场景的需求至关重要。接下来,我们将深入探讨Flink的多种集群模式,剖析其特点、适用场景及相互间的差异。集群部署模式对比Flink的集群部署模式可依据两个关键维度进行分类:一是集群的生命周期和资源隔离方式;
- 【机器学习的五大核心步骤】从零构建一个智能系统
目录一、数据处理:一切从“数据”开始✅常见数据源✅关键任务二、特征工程:从“数据”中提取“洞察”✅常用方法✅高阶技巧三、建立模型:从“算法”到“智能”✅模型类型✅常见算法✅模型训练四、评估迭代:没有反馈,就没有智能✅常用评估指标✅迭代优化方法五、上线应用与持续优化:从“实验室”到“真实世界”✅模型部署方式✅持续优化总结:看懂全流程!延伸阅读推荐作者:一叶轻舟|AI应用开发者&技术博主日期:2025
- Prompt Engineering终极手册:构建高效AI提示词库的完整技术路线
LCG元
大模型prompt人工智能
目录一、提示词库构建核心架构二、关键技术实现步骤1.数据采集与清洗2.提示词向量化编码3.聚类分析与分类存储三、API服务化部署四、性能优化方案五、监控与持续优化六、应用效果展示本文将深入探讨构建企业级AI提示词库的完整技术方案,含数据处理、模型训练、部署监控全流程代码实现在AI应用爆炸式增长的今天,提示词质量直接决定模型输出效果。本文将手把手教你构建企业级提示词库,涵盖以下核心技术环节:一、提示
- MapReduce原理详解:大数据处理的基石与实战应用
AI天才研究院
ChatGPT实战ChatGPTAI大模型应用入门实战与进阶mapreduce大数据ai
MapReduce原理详解:大数据处理的基石与实战应用关键词:MapReduce、大数据处理、原理、算法、实战应用摘要:本文深入探讨了MapReduce这一在大数据处理领域具有基石地位的技术。首先介绍了MapReduce的背景,包括其目的、适用读者、文档结构和相关术语。接着详细阐述了核心概念、算法原理、数学模型,通过Python代码进行了算法的详细说明。然后给出了项目实战案例,从开发环境搭建到代码
- 3 大语言模型预训练数据-3.2 数据处理-3.2.2 冗余去除——1.SimHash算法处理冗余信息的核心原理
SimHash算法处理冗余信息的核心原理一、SimHash算法的定位与核心目标二、SimHash算法的核心原理与执行流程1.**文本预处理与特征提取**2.**特征向量化与哈希映射**3.**特征向量聚合**4.**降维生成SimHash值**5.**相似性判断与冗余过滤**三、SimHash处理冗余信息的核心优势四、实际应用中的优化策略五、SimHash的局限性与补充方案一、SimHash算法的
- Spark Streaming 与 Flink 实时数据处理方案对比与选型指南
浅沫云归
后端技术栈小结spark-streamingflinkreal-time
SparkStreaming与Flink实时数据处理方案对比与选型指南实时数据处理在互联网、电商、物流、金融等领域均有大量应用,面对海量流式数据,SparkStreaming和Flink成为两大主流开源引擎。本文基于生产环境需求,从整体架构、编程模型、容错机制、性能表现、实践案例等维度进行深入对比,并给出选型建议。一、问题背景介绍业务场景日志实时统计与告警用户行为实时画像实时订单或交易监控流式ET
- 解锁阿里云AnalyticDB:数据仓库的革新利器
云资源服务商
阿里云云计算数据库服务器
AnalyticDB:云数据仓库新势力在数字化浪潮中,数据已成为企业的核心资产,而云数据仓库作为数据管理与分析的关键基础设施,正扮演着愈发重要的角色。阿里云AnalyticDB作为云数据仓库领域的佼佼者,以其卓越的性能、创新的架构和丰富的功能,为企业提供了强大的数据处理与分析能力,助力企业在数据驱动的时代中脱颖而出。AnalyticDB是阿里云自主研发的云原生数据仓库,采用存储计算分离+多副本架构
- 基于Python、Ollama DeepSeek与MySQL的数据分析探索:深度学习与数据库的结合
大富大贵7
程序员知识储备1程序员知识储备2程序员知识储备3腾讯云云计算经验分享
摘要随着大数据时代的到来,数据分析成为推动科技进步的核心驱动力之一。特别是在深度学习技术的推动下,数据分析不仅限于传统的数据处理和展示方法,更向更加智能化、自动化的方向发展。本文基于Python编程语言,结合OllamaDeepSeek深度学习模型和MySQL数据库,探索如何利用这些前沿技术对大规模数据进行高效分析。通过实例代码演示,展示如何在Python环境下利用OllamaDeepSeek进行
- 第37节:PyTorch数据加载与预处理
点我头像干啥
pytorch人工智能python
1.引言在深度学习项目中,数据加载与预处理是构建高效模型的关键环节。PyTorch作为当前最流行的深度学习框架之一,提供了一套完整且灵活的数据处理工具链。本文将全面介绍PyTorch中的数据加载与预处理机制,涵盖从基础概念到高级技巧的各个方面。2.PyTorch数据加载核心组件2.1Dataset类torch.utils.data.Dataset是PyTorch中所有数据集处理的抽象基类,代表数据
- 数据格式、数据结构和数据类型的区别
Cachel wood
大数据开发数据结构windows深度学习语言模型人工智能算法
文章目录一、概念定义与核心区别1.数据类型(DataType)2.数据结构(DataStructure)3.数据格式(DataFormat)二、三者的关系:从底层到应用的层级关联1.数据类型是基础:决定数据的内在属性2.数据结构依赖数据类型,定义数据的组织逻辑3.数据格式规范数据结构的外在表示4.层级关系图示三、实际应用中的关联案例1.Python中的数据处理2.数据库中的数据管理3.网络传输中的
- SpreadJS 公式填充技术解析
引言在前端电子表格开发领域,SpreadJS作为一款强大的JavaScript电子表格控件,为开发者提供了丰富且实用的功能,其中公式填充功能尤为重要。它能极大提高数据处理效率,减少手动输入工作量。本文不仅会详细介绍SpreadJS公式填充的功能特性、不同场景表现及相关问题解决办法,还会添加公式填充的代码示例,帮助开发者更好地掌握和运用这一功能,提升前端电子表格应用的性能和用户体验。SpreadJS
- Spark教程1:Spark基础介绍
Cachel wood
大数据开发spark大数据分布式计算机网络数据库数据仓库
文章目录一、Spark是什么?二、Spark的核心优势三、Spark的核心概念四、Spark的主要组件五、Spark的部署模式六、Spark与Hadoop的关系七、Spark应用开发流程八、Spark的应用场景九、Spark版本更新与社区一、Spark是什么?ApacheSpark是一个开源的分布式大数据处理引擎,最初由加州大学伯克利分校AMPLab开发,2013年捐赠给Apache软件基金会,如
- LeetCode[Math] - #66 Plus One
Cwind
javaLeetCode题解AlgorithmMath
原题链接:#66 Plus One
要求:
给定一个用数字数组表示的非负整数,如num1 = {1, 2, 3, 9}, num2 = {9, 9}等,给这个数加上1。
注意:
1. 数字的较高位存在数组的头上,即num1表示数字1239
2. 每一位(数组中的每个元素)的取值范围为0~9
难度:简单
分析:
题目比较简单,只须从数组
- JQuery中$.ajax()方法参数详解
AILIKES
JavaScriptjsonpjqueryAjaxjson
url: 要求为String类型的参数,(默认为当前页地址)发送请求的地址。
type: 要求为String类型的参数,请求方式(post或get)默认为get。注意其他http请求方法,例如put和 delete也可以使用,但仅部分浏览器支持。
timeout: 要求为Number类型的参数,设置请求超时时间(毫秒)。此设置将覆盖$.ajaxSetup()方法的全局
- JConsole & JVisualVM远程监视Webphere服务器JVM
Kai_Ge
JVisualVMJConsoleWebphere
JConsole是JDK里自带的一个工具,可以监测Java程序运行时所有对象的申请、释放等动作,将内存管理的所有信息进行统计、分析、可视化。我们可以根据这些信息判断程序是否有内存泄漏问题。
使用JConsole工具来分析WAS的JVM问题,需要进行相关的配置。
首先我们看WAS服务器端的配置.
1、登录was控制台https://10.4.119.18
- 自定义annotation
120153216
annotation
Java annotation 自定义注释@interface的用法 一、什么是注释
说起注释,得先提一提什么是元数据(metadata)。所谓元数据就是数据的数据。也就是说,元数据是描述数据的。就象数据表中的字段一样,每个字段描述了这个字段下的数据的含义。而J2SE5.0中提供的注释就是java源代码的元数据,也就是说注释是描述java源
- CentOS 5/6.X 使用 EPEL YUM源
2002wmj
centos
CentOS 6.X 安装使用EPEL YUM源1. 查看操作系统版本[root@node1 ~]# uname -a Linux node1.test.com 2.6.32-358.el6.x86_64 #1 SMP Fri Feb 22 00:31:26 UTC 2013 x86_64 x86_64 x86_64 GNU/Linux [root@node1 ~]#
- 在SQLSERVER中查找缺失和无用的索引SQL
357029540
SQL Server
--缺失的索引
SELECT avg_total_user_cost * avg_user_impact * ( user_scans + user_seeks ) AS PossibleImprovement ,
last_user_seek ,
 
- Spring3 MVC 笔记(二) —json+rest优化
7454103
Spring3 MVC
接上次的 spring mvc 注解的一些详细信息!
其实也是一些个人的学习笔记 呵呵!
- 替换“\”的时候报错Unexpected internal error near index 1 \ ^
adminjun
java“\替换”
发现还是有些东西没有刻子脑子里,,过段时间就没什么概念了,所以贴出来...以免再忘...
在拆分字符串时遇到通过 \ 来拆分,可是用所以想通过转义 \\ 来拆分的时候会报异常
public class Main {
/*
- POJ 1035 Spell checker(哈希表)
aijuans
暴力求解--哈希表
/*
题意:输入字典,然后输入单词,判断字典中是否出现过该单词,或者是否进行删除、添加、替换操作,如果是,则输出对应的字典中的单词
要求按照输入时候的排名输出
题解:建立两个哈希表。一个存储字典和输入字典中单词的排名,一个进行最后输出的判重
*/
#include <iostream>
//#define
using namespace std;
const int HASH =
- 通过原型实现javascript Array的去重、最大值和最小值
ayaoxinchao
JavaScriptarrayprototype
用原型函数(prototype)可以定义一些很方便的自定义函数,实现各种自定义功能。本次主要是实现了Array的去重、获取最大值和最小值。
实现代码如下:
<script type="text/javascript">
Array.prototype.unique = function() {
var a = {};
var le
- UIWebView实现https双向认证请求
bewithme
UIWebViewhttpsObjective-C
什么是HTTPS双向认证我已在先前的博文 ASIHTTPRequest实现https双向认证请求
中有讲述,不理解的读者可以先复习一下。本文是用UIWebView来实现对需要客户端证书验证的服务请求,网上有些文章中有涉及到此内容,但都只言片语,没有讲完全,更没有完整的代码,让人困扰不已。但是此知
- NoSQL数据库之Redis数据库管理(Redis高级应用之事务处理、持久化操作、pub_sub、虚拟内存)
bijian1013
redis数据库NoSQL
3.事务处理
Redis对事务的支持目前不比较简单。Redis只能保证一个client发起的事务中的命令可以连续的执行,而中间不会插入其他client的命令。当一个client在一个连接中发出multi命令时,这个连接会进入一个事务上下文,该连接后续的命令不会立即执行,而是先放到一个队列中,当执行exec命令时,redis会顺序的执行队列中
- 各数据库分页sql备忘
bingyingao
oraclesql分页
ORACLE
下面这个效率很低
SELECT * FROM ( SELECT A.*, ROWNUM RN FROM (SELECT * FROM IPAY_RCD_FS_RETURN order by id desc) A ) WHERE RN <20;
下面这个效率很高
SELECT A.*, ROWNUM RN FROM (SELECT * FROM IPAY_RCD_
- 【Scala七】Scala核心一:函数
bit1129
scala
1. 如果函数体只有一行代码,则可以不用写{},比如
def print(x: Int) = println(x)
一行上的多条语句用分号隔开,则只有第一句属于方法体,例如
def printWithValue(x: Int) : String= println(x); "ABC"
上面的代码报错,因为,printWithValue的方法
- 了解GHC的factorial编译过程
bookjovi
haskell
GHC相对其他主流语言的编译器或解释器还是比较复杂的,一部分原因是haskell本身的设计就不易于实现compiler,如lazy特性,static typed,类型推导等。
关于GHC的内部实现有篇文章说的挺好,这里,文中在RTS一节中详细说了haskell的concurrent实现,里面提到了green thread,如果熟悉Go语言的话就会发现,ghc的concurrent实现和Go有点类
- Java-Collections Framework学习与总结-LinkedHashMap
BrokenDreams
LinkedHashMap
前面总结了java.util.HashMap,了解了其内部由散列表实现,每个桶内是一个单向链表。那有没有双向链表的实现呢?双向链表的实现会具备什么特性呢?来看一下HashMap的一个子类——java.util.LinkedHashMap。
- 读《研磨设计模式》-代码笔记-抽象工厂模式-Abstract Factory
bylijinnan
abstract
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
package design.pattern;
/*
* Abstract Factory Pattern
* 抽象工厂模式的目的是:
* 通过在抽象工厂里面定义一组产品接口,方便地切换“产品簇”
* 这些接口是相关或者相依赖的
- 压暗面部高光
cherishLC
PS
方法一、压暗高光&重新着色
当皮肤很油又使用闪光灯时,很容易在面部形成高光区域。
下面讲一下我今天处理高光区域的心得:
皮肤可以分为纹理和色彩两个属性。其中纹理主要由亮度通道(Lab模式的L通道)决定,色彩则由a、b通道确定。
处理思路为在保持高光区域纹理的情况下,对高光区域着色。具体步骤为:降低高光区域的整体的亮度,再进行着色。
如果想简化步骤,可以只进行着色(参看下面的步骤1
- Java VisualVM监控远程JVM
crabdave
visualvm
Java VisualVM监控远程JVM
JDK1.6开始自带的VisualVM就是不错的监控工具.
这个工具就在JAVA_HOME\bin\目录下的jvisualvm.exe, 双击这个文件就能看到界面
通过JMX连接远程机器, 需要经过下面的配置:
1. 修改远程机器JDK配置文件 (我这里远程机器是linux).
 
- Saiku去掉登录模块
daizj
saiku登录olapBI
1、修改applicationContext-saiku-webapp.xml
<security:intercept-url pattern="/rest/**" access="IS_AUTHENTICATED_ANONYMOUSLY" />
<security:intercept-url pattern=&qu
- 浅析 Flex中的Focus
dsjt
htmlFlexFlash
关键字:focus、 setFocus、 IFocusManager、KeyboardEvent
焦点、设置焦点、获得焦点、键盘事件
一、无焦点的困扰——组件监听不到键盘事件
原因:只有获得焦点的组件(确切说是InteractiveObject)才能监听到键盘事件的目标阶段;键盘事件(flash.events.KeyboardEvent)参与冒泡阶段,所以焦点组件的父项(以及它爸
- Yii全局函数使用
dcj3sjt126com
yii
由于YII致力于完美的整合第三方库,它并没有定义任何全局函数。yii中的每一个应用都需要全类别和对象范围。例如,Yii::app()->user;Yii::app()->params['name'];等等。我们可以自行设定全局函数,使得代码看起来更加简洁易用。(原文地址)
我们可以保存在globals.php在protected目录下。然后,在入口脚本index.php的,我们包括在
- 设计模式之单例模式二(解决无序写入的问题)
come_for_dream
单例模式volatile乱序执行双重检验锁
在上篇文章中我们使用了双重检验锁的方式避免懒汉式单例模式下由于多线程造成的实例被多次创建的问题,但是因为由于JVM为了使得处理器内部的运算单元能充分利用,处理器可能会对输入代码进行乱序执行(Out Of Order Execute)优化,处理器会在计算之后将乱序执行的结果进行重组,保证该
- 程序员从初级到高级的蜕变
gcq511120594
框架工作PHPandroidhtml5
软件开发是一个奇怪的行业,市场远远供不应求。这是一个已经存在多年的问题,而且随着时间的流逝,愈演愈烈。
我们严重缺乏能够满足需求的人才。这个行业相当年轻。大多数软件项目是失败的。几乎所有的项目都会超出预算。我们解决问题的最佳指导方针可以归结为——“用一些通用方法去解决问题,当然这些方法常常不管用,于是,唯一能做的就是不断地尝试,逐个看看是否奏效”。
现在我们把淫浸代码时间超过3年的开发人员称为
- Reverse Linked List
hcx2013
list
Reverse a singly linked list.
/**
* Definition for singly-linked list.
* public class ListNode {
* int val;
* ListNode next;
* ListNode(int x) { val = x; }
* }
*/
p
- Spring4.1新特性——数据库集成测试
jinnianshilongnian
spring 4.1
目录
Spring4.1新特性——综述
Spring4.1新特性——Spring核心部分及其他
Spring4.1新特性——Spring缓存框架增强
Spring4.1新特性——异步调用和事件机制的异常处理
Spring4.1新特性——数据库集成测试脚本初始化
Spring4.1新特性——Spring MVC增强
Spring4.1新特性——页面自动化测试框架Spring MVC T
- C# Ajax上传图片同时生成微缩图(附Demo)
liyonghui160com
1.Ajax无刷新上传图片,详情请阅我的这篇文章。(jquery + c# ashx)
2.C#位图处理 System.Drawing。
3.最新demo支持IE7,IE8,Fir
- Java list三种遍历方法性能比较
pda158
java
从c/c++语言转向java开发,学习java语言list遍历的三种方法,顺便测试各种遍历方法的性能,测试方法为在ArrayList中插入1千万条记录,然后遍历ArrayList,发现了一个奇怪的现象,测试代码例如以下:
package com.hisense.tiger.list;
import java.util.ArrayList;
import java.util.Iterator;
- 300个涵盖IT各方面的免费资源(上)——商业与市场篇
shoothao
seo商业与市场IT资源免费资源
A.网站模板+logo+服务器主机+发票生成
HTML5 UP:响应式的HTML5和CSS3网站模板。
Bootswatch:免费的Bootstrap主题。
Templated:收集了845个免费的CSS和HTML5网站模板。
Wordpress.org|Wordpress.com:可免费创建你的新网站。
Strikingly:关注领域中免费无限的移动优
- localStorage、sessionStorage
uule
localStorage
W3School 例子
HTML5 提供了两种在客户端存储数据的新方法:
localStorage - 没有时间限制的数据存储
sessionStorage - 针对一个 session 的数据存储
之前,这些都是由 cookie 完成的。但是 cookie 不适合大量数据的存储,因为它们由每个对服务器的请求来传递,这使得 cookie 速度很慢而且效率也不