import os
import numpy as np
import pandas as pd
import time
from sklearn.multioutput import MultiOutputRegressor
import matplotlib.pyplot as plt
# 核心代码,设置显示的最大列、宽等参数,消掉打印不完全中间的省略号
pd.set_option('display.max_columns', 1000)
pd.set_option('display.width', 1000)
pd.set_option('display.max_colwidth', 1000)
# 设置交叉验证集的折数
from sklearn.model_selection import cross_val_score, KFold
#kf = KFold(n_splits=10, random_state=42, shuffle=True)
kf = KFold(n_splits=10, random_state=42, shuffle=False)
# 时间序列分割
from sklearn.model_selection import TimeSeriesSplit
tscv = TimeSeriesSplit(max_train_size=None, n_splits=10)
def cv_mae(model, train_X, train_y):
#cv_mae = np.mean(-cross_val_score(model, train_X, train_y, scoring="neg_mean_absolute_error", cv = tscv))
cv_mae = np.mean(-cross_val_score(model, train_X, train_y, scoring="neg_mean_absolute_error", cv = tscv))
return cv_mae
# 画图:参数与交叉验证集上的折线图
def parameter_plot(x_list, y_list, x_title, y_title, plot_name):
# 参数优化折线图
#plt.figure(1, figsize=(26, 13))
plt.plot(x_list, y_list, marker='o')
plt.xlabel(x_title)
plt.ylabel(y_title)
plt.title(plot_name)
plt.show()
# 参数优化: XGB
def parameter_optimize_xgb(train_X, train_y):
import xgboost as xgb
# 回归树的颗数
cv_mae_list = []
n_estimator_list = []
# 暴力搜索,选取最优参数 n_estimators = 70
n_estimators = [x for x in range(20, 210, 10)]
# for n_estimator in n_estimators:
# initialize_params = {'learning_rate': 0.1, 'n_estimators': n_estimator, 'max_depth': 3, 'min_child_weight': 1, 'seed': 0,
# 'subsample': 1.0, 'colsample_bytree': 1.0, 'gamma': 0, 'reg_alpha': 0, 'reg_lambda': 1}
# xgb_rg = xgb.XGBRegressor(**initialize_params)
# mult_xgb = MultiOutputRegressor(xgb_rg)
# cv_mae_xgb = cv_mae(mult_xgb, train_X, train_y)
# cv_mae_list.append(cv_mae_xgb)
# n_estimator_list.append(n_estimator)
# print ('n_estimator :{0} 交叉验证平均绝对误差:{1}'.format((n_estimator),(cv_mae_xgb)))
# parameter_plot(n_estimator_list, cv_mae_list, 'n_estimators', 'CV_MAE', 'n_estimators parameter optimization')
# 暴力搜索:选取最优参数 learning_rate :0.21
#n_learning_rate = list(np.linspace(0.01, 2, 20))
# n_learning_rate = list(np.arange(0.01, 2, 0.1))
# for n_estimator in n_learning_rate:
# initialize_params = {'learning_rate': n_estimator, 'n_estimators': 70, 'max_depth': 3, 'min_child_weight': 1, 'seed': 0,
# 'subsample': 1.0, 'colsample_bytree': 1.0, 'gamma': 0, 'reg_alpha': 0, 'reg_lambda': 1}
# xgb_rg = xgb.XGBRegressor(**initialize_params)
# mult_xgb = MultiOutputRegressor(xgb_rg)
# cv_mae_xgb = cv_mae(mult_xgb, train_X, train_y)
# cv_mae_list.append(cv_mae_xgb)
# n_estimator_list.append(n_estimator)
# print ('n_estimator :{0} 交叉验证平均绝对误差:{1}'.format((n_estimator),(cv_mae_xgb)))
# parameter_plot(n_estimator_list, cv_mae_list, 'learning_rate', 'CV_MAE', 'learning_rate parameter optimization')
# 暴力搜索:选取最优参数 max_depth : 4
# parameter_name = 'max_depth'
# max_depth = list(np.arange(3, 20, 1))
# for n_estimator in max_depth:
# initialize_params = {'learning_rate': 0.21, 'n_estimators': 70, 'max_depth': n_estimator, 'min_child_weight': 1, 'seed': 0,
# 'subsample': 1.0, 'colsample_bytree': 1.0, 'gamma': 0, 'reg_alpha': 0, 'reg_lambda': 1}
# xgb_rg = xgb.XGBRegressor(**initialize_params)
# mult_xgb = MultiOutputRegressor(xgb_rg)
# cv_mae_xgb = cv_mae(mult_xgb, train_X, train_y)
# cv_mae_list.append(cv_mae_xgb)
# n_estimator_list.append(n_estimator)
# print (parameter_name + ' :{0} 交叉验证平均绝对误差:{1}'.format((n_estimator),(cv_mae_xgb)))
# parameter_plot(n_estimator_list, cv_mae_list, parameter_name, 'CV_MAE', parameter_name + ' parameter optimization')
# 暴力搜索:选取最优参数 min_child_weight : 0.5
# parameter_name = 'min_child_weight'
# min_child_weight = list(np.arange(0, 2, 0.1))
# for n_estimator in min_child_weight:
# initialize_params = {'learning_rate': 0.21, 'n_estimators': 70, 'max_depth': 4, 'min_child_weight': n_estimator, 'seed': 0,
# 'subsample': 1.0, 'colsample_bytree': 1.0, 'gamma': 0, 'reg_alpha': 0, 'reg_lambda': 1}
# xgb_rg = xgb.XGBRegressor(**initialize_params)
# mult_xgb = MultiOutputRegressor(xgb_rg)
# cv_mae_xgb = cv_mae(mult_xgb, train_X, train_y)
# cv_mae_list.append(cv_mae_xgb)
# n_estimator_list.append(n_estimator)
# print (parameter_name + ' :{0} 交叉验证平均绝对误差:{1}'.format((n_estimator),(cv_mae_xgb)))
# parameter_plot(n_estimator_list, cv_mae_list, parameter_name, 'CV_MAE', parameter_name + ' parameter optimization')
#暴力搜索:选取最优参数 subsample: 1
# parameter_name = 'subsample'
# subsample = list(np.arange(0.1, 1.1, 0.1))
# for n_estimator in subsample:
# n_estimator = round(n_estimator, 1)
# initialize_params = {'learning_rate': 0.21, 'n_estimators': 70, 'max_depth': 4, 'min_child_weight': 0.5, 'seed': 0,
# 'subsample': n_estimator, 'colsample_bytree': 1.0, 'gamma': 0, 'reg_alpha': 0, 'reg_lambda': 1}
# xgb_rg = xgb.XGBRegressor(**initialize_params)
# mult_xgb = MultiOutputRegressor(xgb_rg)
# cv_mae_xgb = cv_mae(mult_xgb, train_X, train_y)
# cv_mae_list.append(cv_mae_xgb)
# n_estimator_list.append(n_estimator)
# print (parameter_name + ' :{0} 交叉验证平均绝对误差:{1}'.format((n_estimator),(cv_mae_xgb)))
# parameter_plot(n_estimator_list, cv_mae_list, parameter_name, 'CV_MAE', parameter_name + ' parameter optimization')
# 暴力搜索:选取最优参数 colsample_bytree: 1
# parameter_name = 'colsample_bytree'
# colsample_bytree = list(np.arange(0.1, 1.1, 0.1))
# for n_estimator in colsample_bytree:
# n_estimator = round(n_estimator, 1)
# initialize_params = {'learning_rate': 0.21, 'n_estimators': 70, 'max_depth': 4, 'min_child_weight': 0.5, 'seed': 0,
# 'subsample': 1, 'colsample_bytree': n_estimator, 'gamma': 0, 'reg_alpha': 0, 'reg_lambda': 1}
# xgb_rg = xgb.XGBRegressor(**initialize_params)
# mult_xgb = MultiOutputRegressor(xgb_rg)
# cv_mae_xgb = cv_mae(mult_xgb, train_X, train_y)
# cv_mae_list.append(cv_mae_xgb)
# n_estimator_list.append(n_estimator)
# print (parameter_name + ' :{0} 交叉验证平均绝对误差:{1}'.format((n_estimator),(cv_mae_xgb)))
# parameter_plot(n_estimator_list, cv_mae_list, parameter_name, 'CV_MAE', parameter_name + ' parameter optimization')
# 暴力搜索:选取最优参数 gamma: 0.2
# parameter_name = 'gamma'
# gamma = list(np.arange(0.1, 2, 0.1))
# for n_estimator in gamma:
# n_estimator = round(n_estimator, 1)
# initialize_params = {'learning_rate': 0.21, 'n_estimators': 70, 'max_depth': 4, 'min_child_weight': 0.5,
# 'seed': 0,
# 'subsample': 1, 'colsample_bytree': 1, 'gamma': n_estimator, 'reg_alpha': 0,
# 'reg_lambda': 1}
# xgb_rg = xgb.XGBRegressor(**initialize_params)
# mult_xgb = MultiOutputRegressor(xgb_rg)
# cv_mae_xgb = cv_mae(mult_xgb, train_X, train_y)
# cv_mae_list.append(cv_mae_xgb)
# n_estimator_list.append(n_estimator)
# print(parameter_name + ' :{0} 交叉验证平均绝对误差:{1}'.format((n_estimator), (cv_mae_xgb)))
# parameter_plot(n_estimator_list, cv_mae_list, parameter_name, 'CV_MAE', parameter_name + ' parameter optimization')
# 暴力搜索:选取最优参数 reg_alpha: 1.8
# parameter_name = 'reg_alpha'
# reg_alpha = list(np.arange(0.01, 3, 0.2))
# for n_estimator in reg_alpha:
# n_estimator = round(n_estimator, 1)
# initialize_params = {'learning_rate': 0.21, 'n_estimators': 70, 'max_depth': 4, 'min_child_weight': 0.5,
# 'seed': 0, 'subsample': 1, 'colsample_bytree': 1, 'gamma': 0.2, 'reg_alpha': n_estimator, 'reg_lambda': 1}
# xgb_rg = xgb.XGBRegressor(**initialize_params)
# mult_xgb = MultiOutputRegressor(xgb_rg)
# cv_mae_xgb = cv_mae(mult_xgb, train_X, train_y)
# cv_mae_list.append(cv_mae_xgb)
# n_estimator_list.append(n_estimator)
# print(parameter_name + ' :{0} 交叉验证平均绝对误差:{1}'.format((n_estimator), (cv_mae_xgb)))
# parameter_plot(n_estimator_list, cv_mae_list, parameter_name, 'CV_MAE', parameter_name + ' parameter optimization')
# 暴力搜索:选取最优参数 reg_lambda: 9.5
parameter_name = 'reg_lambda'
reg_lambda = list(np.arange(0.01, 20, 0.5))
for n_estimator in reg_lambda:
n_estimator = round(n_estimator, 1)
initialize_params = {'learning_rate': 0.21, 'n_estimators': 70, 'max_depth': 4, 'min_child_weight': 0.5,
'seed': 0, 'subsample': 1, 'colsample_bytree': 1, 'gamma': 0.2, 'reg_alpha': 1.8,
'reg_lambda': n_estimator}
xgb_rg = xgb.XGBRegressor(**initialize_params)
mult_xgb = MultiOutputRegressor(xgb_rg)
cv_mae_xgb = cv_mae(mult_xgb, train_X, train_y)
cv_mae_list.append(cv_mae_xgb)
n_estimator_list.append(n_estimator)
print(parameter_name + ' :{0} 交叉验证平均绝对误差:{1}'.format((n_estimator), (cv_mae_xgb)))
parameter_plot(n_estimator_list, cv_mae_list, parameter_name, 'CV_MAE', parameter_name + ' parameter optimization')
print ()