- 【树一线性代数】005入门
Owlet_woodBird
算法
Index本文稍后补全,推荐阅读:https://blog.csdn.net/weixin_60702024/article/details/141874376分析实现总结本文稍后补全,推荐阅读:https://blog.csdn.net/weixin_60702024/article/details/141874376已知非空二叉树T的结点值均为正整数,采用顺序存储方式保存,数据结构定义如下:t
- 如何有效的学习AI大模型?
Python程序员罗宾
学习人工智能语言模型自然语言处理架构
学习AI大模型是一个系统性的过程,涉及到多个学科的知识。以下是一些建议,帮助你更有效地学习AI大模型:基础知识储备:数学基础:学习线性代数、概率论、统计学和微积分等,这些是理解机器学习算法的数学基础。编程技能:掌握至少一种编程语言,如Python,因为大多数AI模型都是用Python实现的。理论学习:机器学习基础:了解监督学习、非监督学习、强化学习等基本概念。深度学习:学习神经网络的基本结构,如卷
- 每日小计划
小糊涂神
活到老学到老到,学习永无止境,我坚持每天学习,我的学习计划如下:1.每天学习五个英语单词,和正在学习英语的儿子共同进步,方便辅导他。2.学习一节统计学或者一节线性代数课程,在此基础上进一步学习数据的处理软件。3.每天微信步数达到1万步,每天饭后过一下二人世界,不到沟通感情,而且还能强身健体!4.学习两节税务师课件,中级会计师已经通过,距离考高级还有几年,空档期考取税务师,充实自己的专业知识。5.坚
- 深度学习算法,该如何深入,举例说明
liyy614
深度学习
深度学习算法的深入学习可以从理论和实践两个方面进行。理论上,深入理解深度学习需要掌握数学基础(如线性代数、概率论、微积分)、机器学习基础和深度学习框架原理。实践上,可以通过实现和优化深度学习模型来提升技能。理论深入数学基础线性代数:理解向量、矩阵、特征值和特征向量等,对于理解神经网络的权重和偏置矩阵至关重要。概率论:用于理解模型的不确定性,如Dropout等正则化技术。微积分:理解梯度下降等优化算
- 非理工科院校怎么打好数学建模比赛 | 南川笔记
南川笔记
Proposition1非理工科院校最好不要打数学建模比赛。虽说“一次建模,终身受益”,但毕竟数学建模既要数学理论的支撑(不仅仅是大学里的微积分、线性代数和概率论与统计,更多的是基于微积分的常偏微分方程、基于线性代数的运筹学和基于概率论与统计的统计分析内容),还要编程的支撑(不是常规的C语言或者Java程序,也不是这几年很火的Python编程,而是基于数值运算的Matlab和基于统计的R),这在一
- 【鼠鼠学AI代码合集#5】线性代数
鼠鼠龙年发大财
鼠鼠学AI系列代码合集人工智能线性代数机器学习
在前面的例子中,我们已经讨论了标量的概念,并展示了如何使用代码对标量进行基本的算术运算。接下来,我将进一步说明该过程,并解释每一步的实现。标量(Scalar)的基本操作标量是只有一个元素的数值。它可以是整数、浮点数等。通过下面的Python代码,我们可以很容易地进行标量的加法、乘法、除法和指数运算。代码实现:importtorch#定义两个标量x=torch.tensor(3.0)#标量x,值为3
- 数学基础 -- 线性代数正交多项式之勒让德多项式展开推导
sz66cm
线性代数决策树算法
勒让德多项式展开的详细过程勒让德多项式是一类在区间[−1,1][-1,1][−1,1]上正交的多项式,可以用来逼近函数。我们可以将一个函数表示为勒让德多项式的线性组合。以下是如何推导勒让德多项式展开系数ana_nan的详细过程。1.勒让德展开的基本假设给定一个函数f(x)f(x)f(x),我们希望将它表示为勒让德多项式的线性组合:f(x)=∑n=0∞anPn(x),f(x)=\sum_{n=0}^
- 线性代数基础
wq_151
mathematic线性代数
Base对于矩阵A,对齐做SVD分解,即UΣV=svd(A)U\SigmaV=svd(A)UΣV=svd(A).其中U为AATAA^TAAT的特征向量,V为ATAA^TAATA的特征向量。Σ\SigmaΣ的对角元素为降序排序的特征值。显然,U、V矩阵中的列向量相互正交,所以也可以视V为svd分解给出了A的列向量空间的正交基,其中最大奇异值(或特征值)对应的特征向量捕捉了数据变化的最大方向。求满足A
- 2022考研数学李永乐复习全书pdf版-基础篇(数一二三通用)
面包资料屋
考研数学
2022考研数学李永乐复习全书pdf版-基础篇(数一二三通用):https://pan.baidu.com/s/1tK9cPPG5Q-xhasqb051ymQ提取码:1111本书是专门为准备参加硕士研究生入学考试提前复习的大二大三学生、在职考研人士及基础薄弱的考生编写。本书以初等数学水平为起点,阐述了考研数学要求的基本知识构架。希望本书能够帮助考生在短时间内厘清考研数学(包括高等数学、线性代数、概
- 编程学习笔记秘籍:开启高效学习之旅
青云交
java学习教学学习笔记传统纸质笔记本笔记工具选择笔记结构设计实践与复习策略掌握了高效记录并整理笔记的方法
目录引言:正文:方向一:笔记工具选择传统纸质笔记本电子文档类工具(如MicrosoftWord、WPS等)专业编程笔记软件(如Notion、Evernote等)在线代码托管平台(如GitHub、GitLab等)方向二:笔记结构设计分类标签化建立知识关联方向三:实践与复习策略实践复习策略结束语:引言:“计算机科学教育不能使人成为程序员,就像学画笔和颜料不能使人成为画家一样。”——埃里克·雷蒙德。在当
- 线性代数|机器学习-P33卷积神经网络ImageNet和卷积规则
取个名字真难呐
算法机器学习矩阵人工智能线性代数
文章目录1.ImageNet2.卷积计算2.1两个多项式卷积2.2函数卷积2.3循环卷积3.周期循环矩阵和非周期循环矩阵4.循环卷积特征值4.1卷积计算的分解4.2运算量4.3二维卷积公式5.KroneckerProduct1.ImageNetImageNet的论文paper链接如下:详细请直接阅读相关论文即可通过网盘分享的文件:imagenet_cvpr09.pdf链接:https://pan.
- Python的图形化界面编程
iteye_20668
Pythonpython
2017.2.14好久没有写代码了,感觉过一个年弄的什么也没有干成,好像看了下c++,突然发现现在来看C++,要简单了好多,并且指针也没有那么难了,然后就是看了下机器学习,感觉有点小难,现在发现好多都涉及到高数,概率论和线性代数的知识,想想当初把这些学的是一塌糊涂。然后上次和胡杨大大聊天的时候,他说好多东西都是在实践中去学习的。好了,继续我的Python吧,Python的图形化界面编程。impor
- matlab初等变换函数,线性代数实践及 MATLAB 入门(2005年10月)
weixin_39861905
matlab初等变换函数
出版时间:2005-10-1作者:陈怀琛,龚杰民编著出版社:电子工业出版社程序集名为dsk05,课件名bk05课件内容简介本书是根据“用软件工具提高线性代数教学”的指导思想,参照美国1992—1997国家科学基金项目ATLAST的思路,编写成的线性代数补充教材,其目的是补充我国现有教材的的缺陷。它分为两篇,第一篇介绍线性代数所用的软件工具MATLAB语言,它可以作为教材,也可以作为手册使用;第二篇
- matlab线性代数电子书,实用大众线性代数 MATLAB版_13652907.pdf
三金乐了
matlab线性代数电子书
【作者】陈怀琛著【形态项】156【出版项】西安:西安电子科技大学出版社,2014.08【ISBN号】978-7-5606-3462-3【中图法分类号】O151.2【原书定价】20.00【主题词】线性代数-计算机辅助设计-MATLAB软件【参考文献格式】陈怀琛著.实用大众线性代数MATLAB版.西安:西安电子科技大学出版社,2014.08.内容提要:传统的线性代数源于数学家,教理论不教应用。工科需要
- 数学基础 -- 线性代数之格拉姆-施密特正交化
sz66cm
线性代数机器学习人工智能
格拉姆-施密特正交化格拉姆-施密特正交化(Gram-SchmidtOrthogonalization)是一种将一组线性无关的向量转换为一组两两正交向量的算法。通过该过程,我们能够从原始向量组中构造正交基,并且可以选择归一化使得向量组成为标准正交基。算法步骤假设我们有一组线性无关的向量{v1,v2,…,vn}\{v_1,v_2,\dots,v_n\}{v1,v2,…,vn},其目标是将这些向量正交化
- Matlab初等数学与线性代数
崔渭阳
matlabmatlab线性代数数据结构
初等数学算术运算基本算术加法+添加数字,追加字符串sum数组元素总和cumsum累积和movsum移动总和A=1:5;B=cumsum(A)B=1×51361015减法-减法diff差分和近似导数乘法.*乘法*矩阵乘法prod数组元素的乘积cumprod累积乘积pagemtimes按页矩阵乘法(自R2020b起)tensorprodTensorproductsbetweentwotensors(自
- 数学基础 -- 线性代数之矩阵的迹
sz66cm
线性代数机器学习决策树
矩阵的迹什么是矩阵的迹?矩阵的迹(TraceofaMatrix)是线性代数中的一个基本概念,定义为一个方阵主对角线上元素的总和。矩阵的迹在许多数学和物理应用中都起着重要作用,例如在矩阵分析、量子力学、统计学和系统理论中。矩阵迹的定义对于一个n×nn\timesnn×n的方阵AAA:A=(a11a12⋯a1na21a22⋯a2n⋮⋮⋱⋮an1an2⋯ann)A=\begin{pmatrix}a_{1
- 线性代数 第五讲:线性方程组_齐次线性方程组_非齐次线性方程组_公共解同解方程组_详解
小徐要考研
线性代数线性代数线性方程组机器学习
线性方程组文章目录线性方程组1.齐次线性方程组的求解1.1核心要义1.2基础解系与线性无关的解向量的个数1.3计算使用举例2.非齐次线性方程的求解2.1非齐次线性方程解的判定2.2非齐次线性方程解的结构2.3计算使用举例3.公共解与同解3.1两个方程组的公共解3.2同解方程组4.方程组的应用5.重难点题型总结5.1抽象齐次线性方程组的求解5.1含有系数的非齐次线性方程组的求解及有条件求全部解问题5
- Day04-线性代数-特征值和特征向量(DataWhale)
liying_tt
数学基础线性代数
七、特征值和特征向量AAA是n阶方阵,数λ\lambdaλ,若存在非零列向量α⃗\vec{\alpha}α,使得Aα⃗=λα⃗A\vec{\alpha}=\lambda\vec{\alpha}Aα=λα,则λ\lambdaλ是特征值,α⃗\vec{\alpha}α是对应于λ\lambdaλ的特征向量λ\lambdaλ可以为0α⃗\vec{\alpha}α不能为0⃗\vec{0}0,且为列向量Aα⃗
- 人工智能中的线性代数与矩阵论学习秘诀之著名教材
audyxiao001
人工智能怎么学人工智能线性代数矩阵学习方法
线性代数是大学数学中非常核心的基础课程,教材繁多,国内外有许多经典的教材。国内比较有名且使用较为广泛的线性代数中文教材见书籍8。书籍8线性代数中文教材推荐:(a)简明线性代数(丘维声);(b)线性代数(居于马);(c)线性代数(李尚志);(d)线性代数(李炯生等);(e)线性代数五讲(龚昇);(f)线性代数的几何意义(任广千等)北京大学的丘维声教授编写的《简明线性代数》[17]是北京市高等教育精品
- 数学基础 -- 线性代数之矩阵正定性
sz66cm
线性代数矩阵
线性代数中的正定性正定性在线性代数中主要用于描述矩阵的特性,尤其是在二次型与优化问题中有重要应用。正定矩阵的定义对于一个n×nn\timesnn×n的对称矩阵AAA,其正定性可以通过以下条件来判断:正定矩阵:如果对于任意非零向量x∈Rnx\in\mathbb{R}^nx∈Rn,二次型xTAxx^TAxxTAx都是正的,即:xTAx>0∀x∈Rn,x≠0x^TAx>0\quad\forallx\in
- 线性代数笔记【二次型】
内 鬼
微电子专业笔记线性代数矩阵
二次型n元二次型:关于n个变量x1,x2,⋯ ,xnx_1,x_2,\cdots,x_nx1,x2,⋯,xn的二次齐次函数KaTeXparseerror:Nosuchenvironment:align*atposition8:\begin{̲a̲l̲i̲g̲n̲*̲}̲f(x_1,x_2,\cdo…系数全为实数的二次型叫做实二次型,除此之外还有复二次型和复二次型矩阵,但在这里不讨论标准二次型:只含
- MIT线性代数
模拟IC和AI的Learner
线性代数线性代数机器学习算法
P5置换矩阵置换矩阵是行重新排列的单位矩阵。置换矩阵用P表示,性质:n阶置换矩阵共有n!个P6零空间某个矩阵的零空间中的向量经过该矩阵的变换后都落在0向量,
- MIT线性代数
模拟IC和AI的Learner
线性代数
本文链接的原创作者为浊酒南街https://blog.csdn.net/weixin_43597208第1讲MIT_线性代数笔记:第01讲行图像和列图像-CSDN博客第2讲MIT_线性代数笔记:第02讲矩阵消元_矩阵firstpivot-CSDN博客第3讲MIT_线性代数笔记:第03讲矩阵的乘法和逆矩阵_矩阵行乘列和列乘行-CSDN博客第4讲MIT_线性代数笔记:第04讲矩阵的LU分解-CSDN博
- 从零开始学数据分析之——《线性代数》第六章 二次型
doubleyue1314
线性代数数据分析数据挖掘算法
6.1二次型与对称矩阵6.1.1二次型及其矩阵定义:n个变量的二次齐次函数称为的一个n元二次型,简称为二次型二次型转换为矩阵表达式:1)平方项的系数直接作为主对角元素2)交叉项的系数除以2放两个对称的相应位置上二次型的矩阵一定是对称的二次型的标准形对应的矩阵是一个对角形矩阵,其秩为主对角线上非零元的个数矩阵表达式写为二次型:1)主对角线元素直接作为平方项的系数2)取主线右上角元素乘以2作为交叉项系
- 线性代数学习笔记8-4:正定矩阵、二次型的几何意义、配方法与消元法的联系、最小二乘法与半正定矩阵A^T A
Insomnia_X
线性代数学习笔记线性代数矩阵学习
正定矩阵Positivedefinitematrice之前说过,正定矩阵是一类特殊的对称矩阵:正定矩阵满足对称矩阵的特性(特征值为实数并且拥有一套正交特征向量、正/负主元的数目等于正/负特征值的数目)另外,正定矩阵还具有更好的性质(所有特征值都为正实数、所有主元都为正实数、左上角的所有任意k阶(10(x≠0)\mathbf{x}^{T}\boldsymbol{A}\mathbf{x}>0\quad
- LU分解算法(串行、并行)
清榎
高性能计算并行程序高性能计算数值分析
一、串行LU分解算法(详细见MIT线性代数)1.LU分解矩阵分解LU分解分解形式L(下三角矩阵)、U(上三角矩阵)目的提高计算效率前提(1)矩阵A为方阵;(2)矩阵可逆(满秩矩阵);(3)消元过程中没有0主元出现,也就是消元过程中不能出现行交换的初等变换LU分解其实就是将线性方程组:Ax=bAx=bAx=b分解为:LUx=bLUx=bLUx=b这样一来就会有:{Ly=bUx=y\begin{cas
- 线性代数 --- LU分解(Gauss消元法的矩阵表示)
松下J27
LinearAlgebra线性代数矩阵LU分解高斯消元矩阵运行gaussianLU
Gauss消元法等价于把系数矩阵A分解成两个三角矩阵L和U的乘法首先,LU分解实际上就是用矩阵的形式来记录的高斯消元的过程。其中,对矩阵A进行高斯消元后的结果为矩阵U,是LU分解后的两个三角矩阵中其中之一。U是一个上三角矩阵,U就是上三角矩阵uppertriangle的首字母的大写。高斯消元的每一步都能用基本消元矩阵E来表示。而所有的E都可以收录在一个矩阵当中,我这里叫他Z矩阵。Z矩阵就是集所有基
- Python NumPy 库详解
寒秋丶
Pythonpythonnumpy开发语言测试开发数据分析数据挖掘软件测试
大家好,在当今数据驱动的世界中,处理大规模数据、进行复杂数值计算是科学研究、工程设计以及数据分析的关键任务之一。在Python生态系统中,NumPy(NumericalPython)库是一款备受推崇的工具,它为我们提供了高效的数组操作、数学函数以及线性代数运算等功能,成为了科学计算和数据处理的利器。一、介绍NumPyNumPy(NumericalPython)是Python中一个开源的数值计算库,
- 【CSS】CSS之&旋转&动画
Pixel0216
CSScss动画css3
目录iconfont图标的使用进入https://www.iconfont.cn位移旋转转换原点缩放位移&旋转&缩放注意点渐变色动画关键帧鼠标经过暂停逐帧动画多组动画多组动画iconfont图标的使用进入https://www.iconfont.cn添加完成iconfont图标之后点击添加至项目,在项目中就可以看到添加的图标常用的有三种方法,第一种下载至本地第二种生成在线代码复制到相应的文件内第三
- tomcat基础与部署发布
暗黑小菠萝
Tomcat java web
从51cto搬家了,以后会更新在这里方便自己查看。
做项目一直用tomcat,都是配置到eclipse中使用,这几天有时间整理一下使用心得,有一些自己配置遇到的细节问题。
Tomcat:一个Servlets和JSP页面的容器,以提供网站服务。
一、Tomcat安装
安装方式:①运行.exe安装包
&n
- 网站架构发展的过程
ayaoxinchao
数据库应用服务器网站架构
1.初始阶段网站架构:应用程序、数据库、文件等资源在同一个服务器上
2.应用服务和数据服务分离:应用服务器、数据库服务器、文件服务器
3.使用缓存改善网站性能:为应用服务器提供本地缓存,但受限于应用服务器的内存容量,可以使用专门的缓存服务器,提供分布式缓存服务器架构
4.使用应用服务器集群改善网站的并发处理能力:使用负载均衡调度服务器,将来自客户端浏览器的访问请求分发到应用服务器集群中的任何
- [信息与安全]数据库的备份问题
comsci
数据库
如果你们建设的信息系统是采用中心-分支的模式,那么这里有一个问题
如果你的数据来自中心数据库,那么中心数据库如果出现故障,你的分支机构的数据如何保证安全呢?
是否应该在这种信息系统结构的基础上进行改造,容许分支机构的信息系统也备份一个中心数据库的文件呢?
&n
- 使用maven tomcat plugin插件debug关联源代码
商人shang
mavendebug查看源码tomcat-plugin
*首先需要配置好'''maven-tomcat7-plugin''',参见[[Maven开发Web项目]]的'''Tomcat'''部分。
*配置好后,在[[Eclipse]]中打开'''Debug Configurations'''界面,在'''Maven Build'''项下新建当前工程的调试。在'''Main'''选项卡中点击'''Browse Workspace...'''选择需要开发的
- 大访问量高并发
oloz
大访问量高并发
大访问量高并发的网站主要压力还是在于数据库的操作上,尽量避免频繁的请求数据库。下面简
要列出几点解决方案:
01、优化你的代码和查询语句,合理使用索引
02、使用缓存技术例如memcache、ecache将不经常变化的数据放入缓存之中
03、采用服务器集群、负载均衡分担大访问量高并发压力
04、数据读写分离
05、合理选用框架,合理架构(推荐分布式架构)。
- cache 服务器
小猪猪08
cache
Cache 即高速缓存.那么cache是怎么样提高系统性能与运行速度呢?是不是在任何情况下用cache都能提高性能?是不是cache用的越多就越好呢?我在近期开发的项目中有所体会,写下来当作总结也希望能跟大家一起探讨探讨,有错误的地方希望大家批评指正。
1.Cache 是怎么样工作的?
Cache 是分配在服务器上
- mysql存储过程
香水浓
mysql
Description:插入大量测试数据
use xmpl;
drop procedure if exists mockup_test_data_sp;
create procedure mockup_test_data_sp(
in number_of_records int
)
begin
declare cnt int;
declare name varch
- CSS的class、id、css文件名的常用命名规则
agevs
JavaScriptUI框架Ajaxcss
CSS的class、id、css文件名的常用命名规则
(一)常用的CSS命名规则
头:header
内容:content/container
尾:footer
导航:nav
侧栏:sidebar
栏目:column
页面外围控制整体布局宽度:wrapper
左右中:left right
- 全局数据源
AILIKES
javatomcatmysqljdbcJNDI
实验目的:为了研究两个项目同时访问一个全局数据源的时候是创建了一个数据源对象,还是创建了两个数据源对象。
1:将diuid和mysql驱动包(druid-1.0.2.jar和mysql-connector-java-5.1.15.jar)copy至%TOMCAT_HOME%/lib下;2:配置数据源,将JNDI在%TOMCAT_HOME%/conf/context.xml中配置好,格式如下:&l
- MYSQL的随机查询的实现方法
baalwolf
mysql
MYSQL的随机抽取实现方法。举个例子,要从tablename表中随机提取一条记录,大家一般的写法就是:SELECT * FROM tablename ORDER BY RAND() LIMIT 1。但是,后来我查了一下MYSQL的官方手册,里面针对RAND()的提示大概意思就是,在ORDER BY从句里面不能使用RAND()函数,因为这样会导致数据列被多次扫描。但是在MYSQL 3.23版本中,
- JAVA的getBytes()方法
bijian1013
javaeclipseunixOS
在Java中,String的getBytes()方法是得到一个操作系统默认的编码格式的字节数组。这个表示在不同OS下,返回的东西不一样!
String.getBytes(String decode)方法会根据指定的decode编码返回某字符串在该编码下的byte数组表示,如:
byte[] b_gbk = "
- AngularJS中操作Cookies
bijian1013
JavaScriptAngularJSCookies
如果你的应用足够大、足够复杂,那么你很快就会遇到这样一咱种情况:你需要在客户端存储一些状态信息,这些状态信息是跨session(会话)的。你可能还记得利用document.cookie接口直接操作纯文本cookie的痛苦经历。
幸运的是,这种方式已经一去不复返了,在所有现代浏览器中几乎
- [Maven学习笔记五]Maven聚合和继承特性
bit1129
maven
Maven聚合
在实际的项目中,一个项目通常会划分为多个模块,为了说明问题,以用户登陆这个小web应用为例。通常一个web应用分为三个模块:
1. 模型和数据持久化层user-core,
2. 业务逻辑层user-service以
3. web展现层user-web,
user-service依赖于user-core
user-web依赖于user-core和use
- 【JVM七】JVM知识点总结
bit1129
jvm
1. JVM运行模式
1.1 JVM运行时分为-server和-client两种模式,在32位机器上只有client模式的JVM。通常,64位的JVM默认都是使用server模式,因为server模式的JVM虽然启动慢点,但是,在运行过程,JVM会尽可能的进行优化
1.2 JVM分为三种字节码解释执行方式:mixed mode, interpret mode以及compiler
- linux下查看nginx、apache、mysql、php的编译参数
ronin47
在linux平台下的应用,最流行的莫过于nginx、apache、mysql、php几个。而这几个常用的应用,在手工编译完以后,在其他一些情况下(如:新增模块),往往想要查看当初都使用了那些参数进行的编译。这时候就可以利用以下方法查看。
1、nginx
[root@361way ~]# /App/nginx/sbin/nginx -V
nginx: nginx version: nginx/
- unity中运用Resources.Load的方法?
brotherlamp
unity视频unity资料unity自学unityunity教程
问:unity中运用Resources.Load的方法?
答:Resources.Load是unity本地动态加载资本所用的方法,也即是你想动态加载的时分才用到它,比方枪弹,特效,某些实时替换的图像什么的,主张此文件夹不要放太多东西,在打包的时分,它会独自把里边的一切东西都会集打包到一同,不论里边有没有你用的东西,所以大多数资本应该是自个建文件放置
1、unity实时替换的物体即是依据环境条件
- 线段树-入门
bylijinnan
java算法线段树
/**
* 线段树入门
* 问题:已知线段[2,5] [4,6] [0,7];求点2,4,7分别出现了多少次
* 以下代码建立的线段树用链表来保存,且树的叶子结点类似[i,i]
*
* 参考链接:http://hi.baidu.com/semluhiigubbqvq/item/be736a33a8864789f4e4ad18
* @author lijinna
- 全选与反选
chicony
全选
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">
<html>
<head>
<title>全选与反选</title>
- vim一些简单记录
chenchao051
vim
mac在/usr/share/vim/vimrc linux在/etc/vimrc
1、问:后退键不能删除数据,不能往后退怎么办?
答:在vimrc中加入set backspace=2
2、问:如何控制tab键的缩进?
答:在vimrc中加入set tabstop=4 (任何
- Sublime Text 快捷键
daizj
快捷键sublime
[size=large][/size]Sublime Text快捷键:Ctrl+Shift+P:打开命令面板Ctrl+P:搜索项目中的文件Ctrl+G:跳转到第几行Ctrl+W:关闭当前打开文件Ctrl+Shift+W:关闭所有打开文件Ctrl+Shift+V:粘贴并格式化Ctrl+D:选择单词,重复可增加选择下一个相同的单词Ctrl+L:选择行,重复可依次增加选择下一行Ctrl+Shift+L:
- php 引用(&)详解
dcj3sjt126com
PHP
在PHP 中引用的意思是:不同的名字访问同一个变量内容. 与C语言中的指针是有差别的.C语言中的指针里面存储的是变量的内容在内存中存放的地址 变量的引用 PHP 的引用允许你用两个变量来指向同一个内容 复制代码代码如下:
<?
$a="ABC";
$b =&$a;
echo
- SVN中trunk,branches,tags用法详解
dcj3sjt126com
SVN
Subversion有一个很标准的目录结构,是这样的。比如项目是proj,svn地址为svn://proj/,那么标准的svn布局是svn://proj/|+-trunk+-branches+-tags这是一个标准的布局,trunk为主开发目录,branches为分支开发目录,tags为tag存档目录(不允许修改)。但是具体这几个目录应该如何使用,svn并没有明确的规范,更多的还是用户自己的习惯。
- 对软件设计的思考
e200702084
设计模式数据结构算法ssh活动
软件设计的宏观与微观
软件开发是一种高智商的开发活动。一个优秀的软件设计人员不仅要从宏观上把握软件之间的开发,也要从微观上把握软件之间的开发。宏观上,可以应用面向对象设计,采用流行的SSH架构,采用web层,业务逻辑层,持久层分层架构。采用设计模式提供系统的健壮性和可维护性。微观上,对于一个类,甚至方法的调用,从计算机的角度模拟程序的运行情况。了解内存分配,参数传
- 同步、异步、阻塞、非阻塞
geeksun
非阻塞
同步、异步、阻塞、非阻塞这几个概念有时有点混淆,在此文试图解释一下。
同步:发出方法调用后,当没有返回结果,当前线程会一直在等待(阻塞)状态。
场景:打电话,营业厅窗口办业务、B/S架构的http请求-响应模式。
异步:方法调用后不立即返回结果,调用结果通过状态、通知或回调通知方法调用者或接收者。异步方法调用后,当前线程不会阻塞,会继续执行其他任务。
实现:
- Reverse SSH Tunnel 反向打洞實錄
hongtoushizi
ssh
實際的操作步驟:
# 首先,在客戶那理的機器下指令連回我們自己的 Server,並設定自己 Server 上的 12345 port 會對應到幾器上的 SSH port
ssh -NfR 12345:localhost:22
[email protected]
# 然後在 myhost 的機器上連自己的 12345 port,就可以連回在客戶那的機器
ssh localhost -p 1
- Hibernate中的缓存
Josh_Persistence
一级缓存Hiberante缓存查询缓存二级缓存
Hibernate中的缓存
一、Hiberante中常见的三大缓存:一级缓存,二级缓存和查询缓存。
Hibernate中提供了两级Cache,第一级别的缓存是Session级别的缓存,它是属于事务范围的缓存。这一级别的缓存是由hibernate管理的,一般情况下无需进行干预;第二级别的缓存是SessionFactory级别的缓存,它是属于进程范围或群集范围的缓存。这一级别的缓存
- 对象关系行为模式之延迟加载
home198979
PHP架构延迟加载
形象化设计模式实战 HELLO!架构
一、概念
Lazy Load:一个对象,它虽然不包含所需要的所有数据,但是知道怎么获取这些数据。
延迟加载貌似很简单,就是在数据需要时再从数据库获取,减少数据库的消耗。但这其中还是有不少技巧的。
二、实现延迟加载
实现Lazy Load主要有四种方法:延迟初始化、虚
- xml 验证
pengfeicao521
xmlxml解析
有些字符,xml不能识别,用jdom或者dom4j解析的时候就报错
public static void testPattern() {
// 含有非法字符的串
String str = "Jamey친ÑԂ
- div设置半透明效果
spjich
css半透明
为div设置如下样式:
div{filter:alpha(Opacity=80);-moz-opacity:0.5;opacity: 0.5;}
说明:
1、filter:对win IE设置半透明滤镜效果,filter:alpha(Opacity=80)代表该对象80%半透明,火狐浏览器不认2、-moz-opaci
- 你真的了解单例模式么?
w574240966
java单例设计模式jvm
单例模式,很多初学者认为单例模式很简单,并且认为自己已经掌握了这种设计模式。但事实上,你真的了解单例模式了么。
一,单例模式的5中写法。(回字的四种写法,哈哈。)
1,懒汉式
(1)线程不安全的懒汉式
public cla