**GoogLeNet的成功主要得益于基础卷积块—Inception块,整个GoogLeNet的主体架构可以看成多个Inception模块堆叠而成。**Inception块结构如下图所示:
由上图可以看出,Inception块里有4条并行的线路。前3条线路使用窗口大小分别是 1 × 1 1\times 1 1×1、 3 × 3 3\times 3 3×3和 5 × 5 5\times 5 5×5的卷积层来抽取不同空间尺寸下的信息,其中中间2个线路会对输入先做 1 × 1 1\times 1 1×1卷积来减少输入通道数,以降低模型复杂度。第四条线路则使用 3 × 3 3\times 3 3×3最大池化层,后接 1 × 1 1\times 1 1×1卷积层来改变通道数。4条线路都使用了合适的填充来使输入与输出的高和宽一致。最后我们将每条线路的输出在通道维上连结,并输入接下来的层中去。
Inception 结构中采用 1 × 1 1 \times 1 1×1、 3 × 3 3\times3 3×3和 5 × 5 5\times5 5×5三种卷积核的卷积层进行并行提取特征,这可以加大网络模型的宽度,不同大小的卷积核也就意味着原始Inception 结构可以获取到不同大小的感受野,上图中的最后合并就是将不同尺度特征进行深度融合。
Inception块中可以自定义的超参数是每个层的输出通道数
,以此来控制模型复杂度。
import time
import torch
from torch import nn, optim
import torch.nn.functional as F
import sys
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
class Inception(nn.Module):
# c1 - c4为每条线路里层的输出通道数
def __init__(self, in_c, c1, c2, c3, c4):
super(Inception, self).__init__()
# 线路1,单1 x 1卷积层
self.p1_1 = nn.Conv2d(in_c, c1, kernel_size=1)
# 线路2,1 x 1卷积层后接3 x 3卷积层
self.p2_1 = nn.Conv2d(in_c, c2[0], kernel_size=1)
self.p2_2 = nn.Conv2d(c2[0], c2[1], kernel_size=3, padding=1)
# 线路3,1 x 1卷积层后接5 x 5卷积层
self.p3_1 = nn.Conv2d(in_c, c3[0], kernel_size=1)
self.p3_2 = nn.Conv2d(c3[0], c3[1], kernel_size=5, padding=2)
# 线路4,3 x 3最大池化层后接1 x 1卷积层
self.p4_1 = nn.MaxPool2d(kernel_size=3, stride=1, padding=1)
self.p4_2 = nn.Conv2d(in_c, c4, kernel_size=1)
def forward(self, x):
p1 = F.relu(self.p1_1(x))
p2 = F.relu(self.p2_2(F.relu(self.p2_1(x))))
p3 = F.relu(self.p3_2(F.relu(self.p3_1(x))))
p4 = F.relu(self.p4_2(self.p4_1(x)))
return torch.cat((p1, p2, p3, p4), dim=1) # 在通道维上连结输出
GoogleLeNet-V1模型结构如下:
从图中可以看出,GoogLeNet主体架构是利用改进之后的Inception结构堆积而成22层层卷积神经网络。同时GoogLeNet在全连接层之前采用了平均池化层来降低特征,该想法来自也NIN事实证明可以将TOP1 accuracy提高0.6%。从上图也可以看出GoogLeNet网络架构较深,如果梯度从最后一层传递到第一层,可能会出现梯度消失的情况。因此为了避免梯度消失,网络额外增加了2个辅助的softmax用于向前传导梯度。
其各层参数示意图如下:
GoogLeNet跟VGG一样,在主体卷积部分中使用5个模块(block),每个模块之间使用步幅为2的 3 × 3 3\times 3 3×3最大池化层来减小输出高宽。第一模块使用一个64通道的 7 × 7 7\times 7 7×7卷积层。
b1 = nn.Sequential(nn.Conv2d(1, 64, kernel_size=7, stride=2, padding=3),
nn.ReLU(),
nn.MaxPool2d(kernel_size=3, stride=2, padding=1))
第二模块使用2个卷积层:首先是64通道的 1 × 1 1\times 1 1×1卷积层,然后是将通道增大3倍的 3 × 3 3\times 3 3×3卷积层。它对应Inception块中的第二条线路。
b2 = nn.Sequential(nn.Conv2d(64, 64, kernel_size=1),
nn.Conv2d(64, 192, kernel_size=3, padding=1),
nn.MaxPool2d(kernel_size=3, stride=2, padding=1))
第三模块串联2个完整的Inception块。第一个Inception块的输出通道数为 64 + 128 + 32 + 32 = 256 64+128+32+32=256 64+128+32+32=256,其中4条线路的输出通道数比例为 64 : 128 : 32 : 32 = 2 : 4 : 1 : 1 64:128:32:32=2:4:1:1 64:128:32:32=2:4:1:1。其中第二、第三条线路先分别将输入通道数减小至 96 / 192 = 1 / 2 96/192=1/2 96/192=1/2和 16 / 192 = 1 / 12 16/192=1/12 16/192=1/12后,再接上第二层卷积层。第二个Inception块输出通道数增至 128 + 192 + 96 + 64 = 480 128+192+96+64=480 128+192+96+64=480,每条线路的输出通道数之比为 128 : 192 : 96 : 64 = 4 : 6 : 3 : 2 128:192:96:64 = 4:6:3:2 128:192:96:64=4:6:3:2。其中第二、第三条线路先分别将输入通道数减小至 128 / 256 = 1 / 2 128/256=1/2 128/256=1/2和 32 / 256 = 1 / 8 32/256=1/8 32/256=1/8。
b3 = nn.Sequential(Inception(192, 64, (96, 128), (16, 32), 32),
Inception(256, 128, (128, 192), (32, 96), 64),
nn.MaxPool2d(kernel_size=3, stride=2, padding=1))
第四模块更加复杂。它串联了5个Inception块,其输出通道数分别是 192 + 208 + 48 + 64 = 512 192+208+48+64=512 192+208+48+64=512、 160 + 224 + 64 + 64 = 512 160+224+64+64=512 160+224+64+64=512、 128 + 256 + 64 + 64 = 512 128+256+64+64=512 128+256+64+64=512、 112 + 288 + 64 + 64 = 528 112+288+64+64=528 112+288+64+64=528和 256 + 320 + 128 + 128 = 832 256+320+128+128=832 256+320+128+128=832。这些线路的通道数分配和第三模块中的类似,首先含 3 × 3 3\times 3 3×3卷积层的第二条线路输出最多通道,其次是仅含 1 × 1 1\times 1 1×1卷积层的第一条线路,之后是含 5 × 5 5\times 5 5×5卷积层的第三条线路和含 3 × 3 3\times 3 3×3最大池化层的第四条线路。其中第二、第三条线路都会先按比例减小通道数。这些比例在各个Inception块中都略有不同。
b4 = nn.Sequential(Inception(480, 192, (96, 208), (16, 48), 64),
Inception(512, 160, (112, 224), (24, 64), 64),
Inception(512, 128, (128, 256), (24, 64), 64),
Inception(512, 112, (144, 288), (32, 64), 64),
Inception(528, 256, (160, 320), (32, 128), 128),
nn.MaxPool2d(kernel_size=3, stride=2, padding=1))
第五模块有输出通道数为 256 + 320 + 128 + 128 = 832 256+320+128+128=832 256+320+128+128=832和 384 + 384 + 128 + 128 = 1024 384+384+128+128=1024 384+384+128+128=1024的两个Inception块。其中每条线路的通道数的分配思路和第三、第四模块中的一致,只是在具体数值上有所不同。需要注意的是,第五模块的后面紧跟输出层,该模块同NiN一样使用全局平均池化层来将每个通道的高和宽变成1。最后我们将输出变成二维数组后接上一个输出个数为标签类别数的全连接层。
b5 = nn.Sequential(Inception(832, 256, (160, 320), (32, 128), 128),
Inception(832, 384, (192, 384), (48, 128), 128),
d2l.GlobalAvgPool2d())
net = nn.Sequential(b1, b2, b3, b4, b5,
d2l.FlattenLayer(), nn.Linear(1024, 10))
GoogLeNet模型的计算复杂,而且不如VGG那样便于修改通道数。此处我们将输入的高和宽从224降到96来简化计算。下面演示各个模块之间的输出的形状变化。
net = nn.Sequential(b1, b2, b3, b4, b5, d2l.FlattenLayer(), nn.Linear(1024, 10))
X = torch.rand(1, 1, 96, 96)
for blk in net.children():
X = blk(X)
print('output shape: ', X.shape)
输出:
output shape: torch.Size([1, 64, 24, 24])
output shape: torch.Size([1, 192, 12, 12])
output shape: torch.Size([1, 480, 6, 6])
output shape: torch.Size([1, 832, 3, 3])
output shape: torch.Size([1, 1024, 1, 1])
output shape: torch.Size([1, 1024])
output shape: torch.Size([1, 10])
我们使用高和宽均为96像素的图像来训练GoogLeNet模型。训练使用的图像依然来自Fashion-MNIST数据集。
batch_size = 128
# 如出现“out of memory”的报错信息,可减小batch_size或resize
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size, resize=96)
lr, num_epochs = 0.001, 5
optimizer = torch.optim.Adam(net.parameters(), lr=lr)
d2l.train_ch5(net, train_iter, test_iter, batch_size, optimizer, device, num_epochs)
输出:
training on cuda
epoch 1, loss 0.0087, train acc 0.570, test acc 0.831, time 45.5 sec
epoch 2, loss 0.0032, train acc 0.851, test acc 0.853, time 48.5 sec
epoch 3, loss 0.0026, train acc 0.880, test acc 0.883, time 45.4 sec
epoch 4, loss 0.0022, train acc 0.895, test acc 0.887, time 46.6 sec
epoch 5, loss 0.0020, train acc 0.906, test acc 0.896, time 43.5 sec
如果文章内容对你有帮助,感谢点赞+关注!
关注下方GZH:阿旭算法与机器学习,可获取更多干货内容~欢迎共同学习交流