- python-常用的深度学习框架
Enougme
TensorFlowpython深度学习开发语言
Python是当前深度学习与机器学习领域的主流编程语言,其丰富的生态系统和多样化的框架使得构建深度学习模型变得非常高效。以下是一些主流的深度学习框架,以及每个框架的特点和适用场景。1.PyTorch特点:动态计算图:支持动态构建和修改计算图,调试体验好,灵活性强。社区生态丰富:拥有大量教程、开源代码和第三方工具支持。广泛应用:深受研究人员和实验开发者的喜爱,也适用于生产环境。TorchScript
- Xarray的维度魔法
Python与遥感
python
前言遥感数据通常是多维的,涉及到时空四维数据(经度、纬度、时间、波段)。在这种复杂的数据结构下,如何高效、清晰地进行分析成为一个难题。今天,我们将介绍xarray库,它是处理这类多维数据的强大工具。xarray不仅能让你的代码更加简洁直观,还能使复杂的数据操作变得优雅。接下来,我们将一起探讨如何使用xarray应对遥感数据分析中的各种挑战。一、为什么选择Xarray?传统numpy数组的痛点:维度
- TensorFlow面试题及参考答案
大模型大数据攻城狮
tensorflow人工智能pythonpytorchkerasdropout模型量化
目录什么是TensorFlow的计算图?详细描述TensorFlow计算图的组成结构(节点、边、会话)它与动态图(EagerExecution)的区别是什么?TensorFlow静态计算图与动态图(EagerExecution)的区别及适用场景是什么?解释张量(Tensor)的概念及其在TensorFlow中的作用。解释TensorFlow中张量(Tensor)的核心概念及与Numpy数组的异同。
- 5、Pytorch 实现简单图卷积GCN,数据集Cora分类任务
找个栗子
PyTorch开始到scipytorch人工智能python
cora数据集-下载地址https://linqs-data.soe.ucsc.edu/public/lbc/cora.tgz1、Cora数据集是什么?Cora数据集由2708篇科学出版物组成,分为七类之一。引文网络由5429个链接组成。数据集中的每个出版物都由一个0/1值的单词向量描述,表示字典中不存在/存在相应的单词。该词典由1433个独特的单词组成。数据集下有两个文件cora.citesco
- Python中的NumPy函数探秘:深入了解percentile!
程序员总部
pythonpythonnumpy开发语言
在数据分析和科学计算的领域,NumPy无疑是一个强大的工具。它不仅仅是一个数组处理库,更是一个包含丰富功能的数学计算库。说到这些功能,percentile这个函数就特别引人关注!它在处理数据时非常有用,能够帮助我们理解和分析数据的分布情况。那么,percentile到底是什么呢?我们来详细聊聊。percentile函数的主要作用是计算给定数据集中的百分位数。百分位数是将数据集分成100个相等部分的
- Stable Diffusion进行图像生成
月月猿java
人工智能
使用StableDiffusion进行图像生成通常涉及以下步骤:安装依赖库:首先,你需要安装必要的Python库,如PyTorch、torchvision、diffusers和transformers等。这些库将为你提供深度学习框架、图像处理工具和StableDiffusion模型的接口。获取预训练模型:StableDiffusion模型通常很大,因此你需要从可靠的来源下载预训练模型。Huggin
- Off-Road-Freespace-Detection配置pytorch2.0.0
GFCGUO
pythonubuntulinux学习pip
一、概述在github上进行开源代码搜索,发现了Off-Road-Freespace-Detection(链接如下所示)。这是对越野环境可通行区域的检测,在经过测试之后,发现对自己有益。GitHub-chaytonmin/Off-Road-Freespace-Detection:OfficialimplementationofourICRA'22paper:ORFD:ADatasetandBenc
- PyTorch量化技术教程:第三章 PyTorch模型构建与训练
船长@Quant
Python量化基础pythonpytorchTA-Lib量化交易机器学习深度学习
PyTorch量化技术教程:PyTorch模型构建与训练本教程旨在为读者提供一套全面且深入的PyTorch技术在量化交易领域应用的知识体系。系统涵盖PyTorch基础入门、核心组件详解、模型构建与训练,以及在A股市场中的实战应用。采用理论与实战深度融合的讲解模式,详细剖析如何运用PyTorch打造量化交易系统全流程。从数据处理的精细操作,到模型训练的优化技巧,再到交易信号生成的精准逻辑,以及风险管
- 【transformer理论+实战(三)】必要的 Pytorch 知识
造夢先森
AI大模型transformerpytorch深度学习
【Transformer理论+实战(三)】必要的Pytorch知识【Transformer理论+实战(二)】Lora本地微调实战--deepseek-r1蒸馏模型【Transformer理论+实战(一)】Transformer&LLaMA&Lora介绍文章目录Pytorch基础张量(Tensor)拼接与拆分调整形状索引与切片降维与升维张量计算Pytorch由Facebook人工智能研究院于2017
- 《Python实战进阶》No34:卷积神经网络(CNN)图像分类实战
带娃的IT创业者
Python实战进阶pythoncnn分类
第34集:卷积神经网络(CNN)图像分类实战摘要卷积神经网络(CNN)是计算机视觉领域的核心技术,特别擅长处理图像分类任务。本集将深入讲解CNN的核心组件(卷积层、池化层、全连接层),并演示如何使用PyTorch构建一个完整的CNN模型,在CIFAR-10数据集上实现图像分类。我们还将探讨数据增强和正则化技术(如Dropout和BatchNorm)对模型性能的影响。核心概念和知识点1.CNN的核心
- Numpy学习小记
qq_58136075
学习
1.NumpyArrayNumpy喜欢用电脑内存中连续的一块物理地址存储数据,因为都是连号的嘛,找到前后的号,不用跑很远,非常迅速。而Python的List并不是连续存储的,它的数据是分散在不同的物理空间,在批量计算的时候,连号的肯定比不连号的算起来更快。2.维度(1)创建数据np.array创建数据,array.ndims数据维数(2)添加数据cars1=np.array([5,10,12,6]
- 飞桨Paddle Inference模型转ONNX模型的方法
Sweet锦
AIpaddlepaddle人工智能AI编程
ONNX是个好东西,其全称OpenNeuralNetworkExchange,是一种用于表示和交换深度学习模型的开放标准格式。由Microsoft和Facebook在2017年共同推出的一个开放标准,旨在促进不同深度学习框架之间的互操作性,并采用相同格式存储模型数据。ONNX有诸多优势,简直让人爱不释手呀。以下简单列举几个:在不同深度学习框架(如PaddlePaddle、PyTorch、Tenso
- 分布式训练:(Pytorch)
达柳斯·绍达华·宁
分布式pytorch人工智能
分布式训练是将机器学习模型的训练过程分散到多个计算节点或设备上,以提高训练速度和效率,尤其是在处理大规模数据和模型时。分布式训练主要分为数据并行和模型并行两种主要策略:1.数据并行(DataParallelism)数据并行是最常见的分布式训练方式。在这种方法中,模型副本会被复制到多个计算设备上,每个设备处理不同的批次(batch)数据。工作流程:每个设备上都有一个完整的模型副本。数据集被分割成多个
- Python Joblib库使用学习总结
酒酿小小丸子
python学习开发语言
实践环境python3.6.2Joblib简介Joblib是一组在Python中提供轻量级流水线的工具。特别是:函数的透明磁盘缓存和延迟重新计算(记忆模式)简单易用的并行计算Joblib已被优化得很快速,很健壮了,特别是在大数据上,并对numpy数组进行了特定的优化。主要功能输出值的透明快速磁盘缓存(Transparentandfastdisk-cachingofoutputvalue):Pyth
- AI算法成长练习第一篇——Task-Adaptive Negative Envision for Few-Shot Open-Set Recognition代码复现
威少的书童
人工智能算法python机器学习深度学习
论文代码复现代码结构ArchitecturesAttnClassifier.pyimporttorch.nnasnnimporttorchimporttorch.nn.functionalasFimportnumpyasnpclassClassifier(nn.Module):def__init__(self,args,feat_dim,param_seam,train_weight_base=F
- PyTorch量化技术教程:第一章 PyTorch基础入门
船长@Quant
Python量化基础pythonpytorchTA-Lib量化交易机器学习深度学习
PyTorch量化技术教程:PyTorch基础入门本教程旨在为读者提供一套全面且深入的PyTorch技术在量化交易领域应用的知识体系。系统涵盖PyTorch基础入门、核心组件详解、模型构建与训练,以及在A股市场中的实战应用。采用理论与实战深度融合的讲解模式,详细剖析如何运用PyTorch打造量化交易系统全流程。从数据处理的精细操作,到模型训练的优化技巧,再到交易信号生成的精准逻辑,以及风险管理的严
- 【Python】matplotlib:Python可视化库,补充:报错处理(安装超时,numpy/pandas/matplotlib版本匹配问题,scipy安装报错)
yannan20190313
Pythonpythonmatplotlib信息可视化
Matplotlib是Python中最基础的可视化模块,主要用于绘制二维平面图。其它可视化库有些是基于matplotlib,例如:seaborn库就是基于matplotlib专用于统计数据可视化。Matplotlib官网:Matplotlib—VisualizationwithPythonMatplotlib是第三方库,需要安装:pipinstallmatplotlib导入Matplotlib库:
- pytorch与其他ai工具
weixin_47868976
人工智能pytorchpython
PyTorch、TensorFlow及其他工具面试考点与回答策略一、PyTorch高频考点与回答模板1.核心特性与原理动态计算图(DynamicGraph)考点:动态图与静态图的区别、优缺点。回答:“PyTorch使用动态图(Define-by-Run),允许在运行时修改计算逻辑,调试直观(如print张量值),适合研究场景;缺点是部署时需转为静态图(TorchScript)以优化性能。”自动微分
- 【pytorch】图像数据预处理
子根
笔记pytorchpython深度学习
本文是记录一些在深度学习中的预处理的一些语法和函数torchvision.transforms的图像变换[PyTorch学习笔记]2.3二十二种transforms图片数据预处理方法-知乎TORCHVISION.TRANSFORMS的图像预处理_阿巫兮兮的博客-CSDN博客PyTorch09:transforms图像变换、方法操作及自定义方法-YEY的博客|YEYBlog2D、3D中心裁剪:imp
- 使用Python和PyTorch实现了一个简单的生成对抗网络(GAN)用于生成应力值图像
神经网络15044
算法python神经网络pythonpytorch生成对抗网络
以下是一个使用Python和PyTorch实现了一个简单的生成对抗网络(GAN)用于生成应力值图像,并添加了显示正确颜色条的功能。importtorchimporttorch.nnasnnimporttorch.optimasoptimimportmatplotlib.pyplotaspltimportnumpyasnpfromtorchvision.utilsimportmake_gridimp
- 深度学习框架PyTorch——从入门到精通(10)PyTorch张量简介
Fansv587
深度学习pytorch人工智能经验分享机器学习python
这部分是PyTorch介绍——YouTube系列的内容,每一节都对应一个youtube视频。(可能跟之前的有一定的重复)创建张量随机张量和种子张量形状张量数据类型使用PyTorch张量进行数学与逻辑运算简单介绍——张量广播关于张量更多的数学操作原地修改张量复制张量迁移到加速器操作张量形状改变维度数量NumPy桥接本节YouTube视频地址:点击这里张量是PyTorch中的核心数据抽象。首先,让我们
- 腾讯滑块验证码自动分析工具:原理与实现
ADRU
爬虫pythonpythongithub网络爬虫
腾讯滑块验证码自动分析工具:原理与实现项目简介滑块验证码是网站常用的安全验证方式,需要用户将滑块拖动到正确位置以验证身份。本项目开发了一个自动化工具,通过计算机视觉技术,能够分析腾讯滑块验证码并精确计算滑块需要移动的距离。该工具可用于自动化测试、安全研究和验证码优化等领域。技术栈:Python、OpenCV、PIL(Pillow)、Matplotlib、NumPy核心功能自动解析验证码CSS样式信
- PyTorch实战:灵活构建神经网络
shejizuopin
pytorch神经网络人工智能PyTorch实战灵活构建神经网络代码
引言PyTorch,作为由FacebookAIResearch团队开发的开源深度学习框架,以其灵活性、动态计算图以及易于调试的特性,在深度学习领域赢得了广泛的认可。无论是学术研究还是工业应用,PyTorch都提供了强大的支持。本文将结合CSDN网站上的最新资源,分享PyTorch实战中的最实用解决技巧,并通过代码示例进行详细分析,帮助读者灵活构建神经网络模型。一、PyTorch基础与安装1.1Py
- 使用python numpy计算并显示音频数据的频谱信息
番茄老夫子
pythonnumpy开发语言
一概念最近需要用到这个数据。笔者需要,使用Python的numpy库结合scipy和matplotlib库来计算并显示音频数据频谱信息的示例代码。我们将使用scipy.io.wavfile来读取音频文件,numpy进行快速傅里叶变换(FFT)计算频谱,最后用matplotlib来绘制频谱图。二源码解析:importnumpyasnpimportmatplotlib.pyplotaspltfroms
- Pytorch 第十二回:循环神经网络——LSTM模型
Start_Present
rnnpytorchlstm神经网络数据分析
Pytorch第十二回:循环神经网络——LSTM模型本次开启深度学习第十二回,基于Pytorch的LSTM循环神经网络模型。本回分享第二个循环神经网络,叫做LSTM模型。在本回中,设计通过LSTM模型来对股票收盘价格进行预测。接下来给大家分享具体思路。本次学习,借助的平台是PyCharm2024.1.3,python版本3.11numpy版本是1.26.4,pytorch版本2.0.0+cu118
- 【深度学习基础 2】 PyTorch 框架
鸢想睡觉
机器学习深度学习pytorch人工智能python
目录一、PyTorch简介二、安装PyTorch三、PyTorch常用函数和操作3.1创建张量(Tensor)3.2基本数学运算3.3自动求导(Autograd)3.4定义神经网络模型3.5训练与评估模型3.6使用模型进行预测四、注意事项五、完整训练示例代码一、PyTorch简介PyTorch是由Facebook开发的开源深度学习框架,以动态计算图(DynamicComputationalGrap
- 从零构建大语言模型全栈开发指南:第二部分:模型架构设计与实现-2.2.2文本生成逻辑:Top-k采样与温度控制
言析数智
从零开始构建大模型大语言模型Top-k采样温度控制
点击关注不迷路点击关注不迷路点击关注不迷路文章大纲2.2.2文本生成逻辑:Top-k采样与温度控制1.文本生成的核心挑战与数学框架1.1自回归生成的基本流程2.`Top-k`采样原理与工程实现2.1数学定义与算法流程2.2PyTorch实现优化3.温度控制的数学本质与参数调优3.1温度系数对概率分布的影响3.2温度控制实现方案4.组合策略与高级优化4.1`Top-k与温度控制的协同应用`5.生成质
- DeepSeek 本地部署详细教程
文or野
deepseek算法数据库deepseek
一、环境准备1.1硬件要求GPU:推荐NVIDIA显卡(RTX3090/4090或更高)显存:至少16GB(根据模型版本调整)内存:32GB及以上存储:50GB可用空间1.2软件依赖操作系统:Linux/WindowsWSL2(推荐Ubuntu20.04+)Python3.8+CUDA11.7+&cuDNNPyTorch2.0+bash复制代码#示例:安装CUDA工具包sudoapt-getins
- 【不降级的解决方案】ModuleNotFoundError: No module named ‘numpy.testing.decorators‘
link_in_csdn
python机器学习数据分析开发语言
之前发现代码报错,出现这个提示,第一反应是在百度和csdn上找,没想到找了一整圈,都在建议我用降级numpy的方法来解决pipinstallnumpy==1.17.0注:当前代码因为包的版本出现问题时,除非在实现逻辑上新包引入了恶性bug(且包的维护者停止了更新或者无力解决),否则极其不推荐降级包;大多数因为升级了包的版本而让原先代码报错的原因,都是因为新的包里面对调用方法、命名空间这类顶层进行了
- 【YOLO】X-AnyLabeling 半自动标注
Abaaba+
YOLO
【YOLO】X-AnyLabeling半自动标注前言整体思路模型转换修改模型YAML文件导入自定义模型常见错误export导出错误AttributeError:module'numpy'hasnoattribute'typeDict'ONNX:exportfailure:UnsupportedONNXopsetversion:13X-AnyLabeling加载自定义模型报错前言本文介绍如何使用X-
- 多线程编程之存钱与取钱
周凡杨
javathread多线程存钱取钱
生活费问题是这样的:学生每月都需要生活费,家长一次预存一段时间的生活费,家长和学生使用统一的一个帐号,在学生每次取帐号中一部分钱,直到帐号中没钱时 通知家长存钱,而家长看到帐户还有钱则不存钱,直到帐户没钱时才存钱。
问题分析:首先问题中有三个实体,学生、家长、银行账户,所以设计程序时就要设计三个类。其中银行账户只有一个,学生和家长操作的是同一个银行账户,学生的行为是
- java中数组与List相互转换的方法
征客丶
JavaScriptjavajsonp
1.List转换成为数组。(这里的List是实体是ArrayList)
调用ArrayList的toArray方法。
toArray
public T[] toArray(T[] a)返回一个按照正确的顺序包含此列表中所有元素的数组;返回数组的运行时类型就是指定数组的运行时类型。如果列表能放入指定的数组,则返回放入此列表元素的数组。否则,将根据指定数组的运行时类型和此列表的大小分
- Shell 流程控制
daizj
流程控制if elsewhilecaseshell
Shell 流程控制
和Java、PHP等语言不一样,sh的流程控制不可为空,如(以下为PHP流程控制写法):
<?php
if(isset($_GET["q"])){
search(q);}else{// 不做任何事情}
在sh/bash里可不能这么写,如果else分支没有语句执行,就不要写这个else,就像这样 if else if
if 语句语
- Linux服务器新手操作之二
周凡杨
Linux 简单 操作
1.利用关键字搜寻Man Pages man -k keyword 其中-k 是选项,keyword是要搜寻的关键字 如果现在想使用whoami命令,但是只记住了前3个字符who,就可以使用 man -k who来搜寻关键字who的man命令 [haself@HA5-DZ26 ~]$ man -k
- socket聊天室之服务器搭建
朱辉辉33
socket
因为我们做的是聊天室,所以会有多个客户端,每个客户端我们用一个线程去实现,通过搭建一个服务器来实现从每个客户端来读取信息和发送信息。
我们先写客户端的线程。
public class ChatSocket extends Thread{
Socket socket;
public ChatSocket(Socket socket){
this.sock
- 利用finereport建设保险公司决策分析系统的思路和方法
老A不折腾
finereport金融保险分析系统报表系统项目开发
决策分析系统呈现的是数据页面,也就是俗称的报表,报表与报表间、数据与数据间都按照一定的逻辑设定,是业务人员查看、分析数据的平台,更是辅助领导们运营决策的平台。底层数据决定上层分析,所以建设决策分析系统一般包括数据层处理(数据仓库建设)。
项目背景介绍
通常,保险公司信息化程度很高,基本上都有业务处理系统(像集团业务处理系统、老业务处理系统、个人代理人系统等)、数据服务系统(通过
- 始终要页面在ifream的最顶层
林鹤霄
index.jsp中有ifream,但是session消失后要让login.jsp始终显示到ifream的最顶层。。。始终没搞定,后来反复琢磨之后,得到了解决办法,在这儿给大家分享下。。
index.jsp--->主要是加了颜色的那一句
<html>
<iframe name="top" ></iframe>
<ifram
- MySQL binlog恢复数据
aigo
mysql
1,先确保my.ini已经配置了binlog:
# binlog
log_bin = D:/mysql-5.6.21-winx64/log/binlog/mysql-bin.log
log_bin_index = D:/mysql-5.6.21-winx64/log/binlog/mysql-bin.index
log_error = D:/mysql-5.6.21-win
- OCX打成CBA包并实现自动安装与自动升级
alxw4616
ocxcab
近来手上有个项目,需要使用ocx控件
(ocx是什么?
http://baike.baidu.com/view/393671.htm)
在生产过程中我遇到了如下问题.
1. 如何让 ocx 自动安装?
a) 如何签名?
b) 如何打包?
c) 如何安装到指定目录?
2.
- Hashmap队列和PriorityQueue队列的应用
百合不是茶
Hashmap队列PriorityQueue队列
HashMap队列已经是学过了的,但是最近在用的时候不是很熟悉,刚刚重新看以一次,
HashMap是K,v键 ,值
put()添加元素
//下面试HashMap去掉重复的
package com.hashMapandPriorityQueue;
import java.util.H
- JDK1.5 returnvalue实例
bijian1013
javathreadjava多线程returnvalue
Callable接口:
返回结果并且可能抛出异常的任务。实现者定义了一个不带任何参数的叫做 call 的方法。
Callable 接口类似于 Runnable,两者都是为那些其实例可能被另一个线程执行的类设计的。但是 Runnable 不会返回结果,并且无法抛出经过检查的异常。
ExecutorService接口方
- angularjs指令中动态编译的方法(适用于有异步请求的情况) 内嵌指令无效
bijian1013
JavaScriptAngularJS
在directive的link中有一个$http请求,当请求完成后根据返回的值动态做element.append('......');这个操作,能显示没问题,可问题是我动态组的HTML里面有ng-click,发现显示出来的内容根本不执行ng-click绑定的方法!
 
- 【Java范型二】Java范型详解之extend限定范型参数的类型
bit1129
extend
在第一篇中,定义范型类时,使用如下的方式:
public class Generics<M, S, N> {
//M,S,N是范型参数
}
这种方式定义的范型类有两个基本的问题:
1. 范型参数定义的实例字段,如private M m = null;由于M的类型在运行时才能确定,那么我们在类的方法中,无法使用m,这跟定义pri
- 【HBase十三】HBase知识点总结
bit1129
hbase
1. 数据从MemStore flush到磁盘的触发条件有哪些?
a.显式调用flush,比如flush 'mytable'
b.MemStore中的数据容量超过flush的指定容量,hbase.hregion.memstore.flush.size,默认值是64M 2. Region的构成是怎么样?
1个Region由若干个Store组成
- 服务器被DDOS攻击防御的SHELL脚本
ronin47
mkdir /root/bin
vi /root/bin/dropip.sh
#!/bin/bash/bin/netstat -na|grep ESTABLISHED|awk ‘{print $5}’|awk -F:‘{print $1}’|sort|uniq -c|sort -rn|head -10|grep -v -E ’192.168|127.0′|awk ‘{if($2!=null&a
- java程序员生存手册-craps 游戏-一个简单的游戏
bylijinnan
java
import java.util.Random;
public class CrapsGame {
/**
*
*一个简单的赌*博游戏,游戏规则如下:
*玩家掷两个骰子,点数为1到6,如果第一次点数和为7或11,则玩家胜,
*如果点数和为2、3或12,则玩家输,
*如果和为其它点数,则记录第一次的点数和,然后继续掷骰,直至点数和等于第一次掷出的点
- TOMCAT启动提示NB: JAVA_HOME should point to a JDK not a JRE解决
开窍的石头
JAVA_HOME
当tomcat是解压的时候,用eclipse启动正常,点击startup.bat的时候启动报错;
报错如下:
The JAVA_HOME environment variable is not defined correctly
This environment variable is needed to run this program
NB: JAVA_HOME shou
- [操作系统内核]操作系统与互联网
comsci
操作系统
我首先申明:我这里所说的问题并不是针对哪个厂商的,仅仅是描述我对操作系统技术的一些看法
操作系统是一种与硬件层关系非常密切的系统软件,按理说,这种系统软件应该是由设计CPU和硬件板卡的厂商开发的,和软件公司没有直接的关系,也就是说,操作系统应该由做硬件的厂商来设计和开发
- 富文本框ckeditor_4.4.7 文本框的简单使用 支持IE11
cuityang
富文本框
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8" />
<title>知识库内容编辑</tit
- Property null not found
darrenzhu
datagridFlexAdvancedpropery null
When you got error message like "Property null not found ***", try to fix it by the following way:
1)if you are using AdvancedDatagrid, make sure you only update the data in the data prov
- MySQl数据库字符串替换函数使用
dcj3sjt126com
mysql函数替换
需求:需要将数据表中一个字段的值里面的所有的 . 替换成 _
原来的数据是 site.title site.keywords ....
替换后要为 site_title site_keywords
使用的SQL语句如下:
updat
- mac上终端起动MySQL的方法
dcj3sjt126com
mysqlmac
首先去官网下载: http://www.mysql.com/downloads/
我下载了5.6.11的dmg然后安装,安装完成之后..如果要用终端去玩SQL.那么一开始要输入很长的:/usr/local/mysql/bin/mysql
这不方便啊,好想像windows下的cmd里面一样输入mysql -uroot -p1这样...上网查了下..可以实现滴.
打开终端,输入:
1
- Gson使用一(Gson)
eksliang
jsongson
转载请出自出处:http://eksliang.iteye.com/blog/2175401 一.概述
从结构上看Json,所有的数据(data)最终都可以分解成三种类型:
第一种类型是标量(scalar),也就是一个单独的字符串(string)或数字(numbers),比如"ickes"这个字符串。
第二种类型是序列(sequence),又叫做数组(array)
- android点滴4
gundumw100
android
Android 47个小知识
http://www.open-open.com/lib/view/open1422676091314.html
Android实用代码七段(一)
http://www.cnblogs.com/over140/archive/2012/09/26/2611999.html
http://www.cnblogs.com/over140/arch
- JavaWeb之JSP基本语法
ihuning
javaweb
目录
JSP模版元素
JSP表达式
JSP脚本片断
EL表达式
JSP注释
特殊字符序列的转义处理
如何查找JSP页面中的错误
JSP模版元素
JSP页面中的静态HTML内容称之为JSP模版元素,在静态的HTML内容之中可以嵌套JSP
- App Extension编程指南(iOS8/OS X v10.10)中文版
啸笑天
ext
当iOS 8.0和OS X v10.10发布后,一个全新的概念出现在我们眼前,那就是应用扩展。顾名思义,应用扩展允许开发者扩展应用的自定义功能和内容,能够让用户在使用其他app时使用该项功能。你可以开发一个应用扩展来执行某些特定的任务,用户使用该扩展后就可以在多个上下文环境中执行该任务。比如说,你提供了一个能让用户把内容分
- SQLServer实现无限级树结构
macroli
oraclesqlSQL Server
表结构如下:
数据库id path titlesort 排序 1 0 首页 0 2 0,1 新闻 1 3 0,2 JAVA 2 4 0,3 JSP 3 5 0,2,3 业界动态 2 6 0,2,3 国内新闻 1
创建一个存储过程来实现,如果要在页面上使用可以设置一个返回变量将至传过去
create procedure test
as
begin
decla
- Css居中div,Css居中img,Css居中文本,Css垂直居中div
qiaolevip
众观千象学习永无止境每天进步一点点css
/**********Css居中Div**********/
div.center {
width: 100px;
margin: 0 auto;
}
/**********Css居中img**********/
img.center {
display: block;
margin-left: auto;
margin-right: auto;
}
- Oracle 常用操作(实用)
吃猫的鱼
oracle
SQL>select text from all_source where owner=user and name=upper('&plsql_name');
SQL>select * from user_ind_columns where index_name=upper('&index_name'); 将表记录恢复到指定时间段以前
- iOS中使用RSA对数据进行加密解密
witcheryne
iosrsaiPhoneobjective c
RSA算法是一种非对称加密算法,常被用于加密数据传输.如果配合上数字摘要算法, 也可以用于文件签名.
本文将讨论如何在iOS中使用RSA传输加密数据. 本文环境
mac os
openssl-1.0.1j, openssl需要使用1.x版本, 推荐使用[homebrew](http://brew.sh/)安装.
Java 8
RSA基本原理
RS