- 【RAG系列】知识加工的艺术 - 文档预处理实战手册
什么都想学的阿超
原理概念#深度学习深度学习RAG人工智能
知识加工的艺术-文档预处理实战手册原始文档文档拆分结构化数据非结构化数据表格处理器文本分割器格式化CSV语义分块知识图谱一、文本拆分的积木法则1.1机械分割vs语义理解固定窗口上下文感知段落拆分...模型参数量达到175B时...语义拆分模型参数量......175B时表现分割策略对比方法优点缺点代码示例固定窗口O(1)时间复杂度割裂技术术语text.split("\n\n")滑动窗口保留局部上下
- 使用 Apache Jena 构建 RDF 数据处理与查询服务
梦落青云
apache知识图谱人工智能
一、引言随着语义网和知识图谱技术的不断发展,RDF(ResourceDescriptionFramework)作为一种用于描述资源的框架,被广泛应用于知识表示和数据集成。ApacheJena是一个功能强大的Java框架,用于处理RDF数据和SPARQL查询。本文将通过一个示例项目,展示如何使用ApacheJena实现RDF数据的加载、查询、推理、插入和更新操作。二、项目概述本项目的目标是使用Apa
- 知识库管理中台架构:数据资产激活与企业效率跃升
Baklib-企业帮助文档
其他
内容概要现代企业知识库管理中台架构的演进已突破传统文档存储范式,转向以智能分类引擎与动态数据治理为核心的认知计算体系。基于AI驱动的语义解析技术与分布式大数据处理框架,该架构实现了非结构化数据的多模态特征提取与知识图谱映射。其中,Baklib在数字体验平台(DXP)领域展现的跨系统整合能力,通过API接口标准化设计打通了CRM、ERP等业务系统的数据孤岛,其多级权限管理体系与实时版本控制机制保障了
- 医疗信息分析与知识图谱系统设计方案
翱翔-蓝天
知识图谱人工智能
医疗信息分析与知识图谱系统设计方案0.系统需求0.1项目背景本系统旨在通过整合医疗机构现有的信息系统数据,结合向量数据库、图数据库和开源AI模型,实现医疗数据的深度分析、疾病预测和医疗知识图谱构建,为医疗决策提供智能化支持。0.2核心需求数据集成与分析:对接现有医疗信息系统(HIS/LIS/PACS/EMR)医疗数据标准化处理多维度统计分析趋势预测分析知识图谱构建:医疗知识抽取实体关系构建知识推理
- 基于大模型的 SDL 需求阶段安全需求挖掘实战指南 —— 四步法实现从业务需求到风险矩阵的智能转换
大F的智能小课
大模型理论和实战人工智能语言模型算法安全
在软件开发生命周期(SDL)中,需求阶段的安全需求挖掘至关重要,它直接影响到软件的安全性和可靠性。随着大模型技术的发展,我们可以利用其强大的自然语言处理和知识图谱能力,实现从业务需求到风险矩阵的智能转换。本文将介绍一种基于大模型的四步法,帮助安全团队高效挖掘安全需求。一、业务需求解析:大模型驱动的语义理解目标:将自然语言描述的业务需求转化为结构化安全要素。方法:需求文本预处理:使用大模型(如GPT
- 系统架构设计师备考策略
丰年稻香
系统架构设计师备考指南架构系统架构设计师
一、备考痛点系统架构设计师考试以知识体系庞杂、实践性强著称,官方教材《系统架构设计师教程(第2版)》厚达700余页,若盲目通读耗时费力。根据近三年考情分析,“抓重点+分层突破+实战输出”是高效通关的核心策略。本文将从考试结构拆解、核心知识图谱、三阶段备考计划、高分技巧四大维度,助你实现精准备考。二、考试科目与核心知识领域1.考试科目全景图科目题型分值时间核心能力要求综合知识75道单选题75分150
- DEMF模型赋能多模态图像融合,助力肺癌高效分类
cv君
cv君独家视角AI内幕系列深度学习PET-CT集成分类肺部图像多模态图像融合
目录论文创新点实验设计1.可视化的研究设计2.样本选取和数据处理3.集成分类模型4.实验结果5.可视化结果图表总结可视化知识图谱在肺癌早期筛查中,计算机断层扫描(CT)和正电子发射断层扫描(PET)作为两种关键的影像学手段,分别提供了丰富的解剖结构信息和代谢活动信息。然而,单一模态的影像数据在诊断精准度上往往存在瓶颈,难以全面揭示病变特征。因此,如何将多模态影像数据有机融合,以提升诊断效能,已成为
- 开源 AI 模型助力“智能提取“提取全攻略
黑金IT
AI智能知识图谱开源人工智能
在当今数字化浪潮汹涌澎湃的时代,信息如潮水般涌来,从浩如烟海的文本里快速又精准地提取人名,已然成为诸多领域的刚需。无论是让办公软件化身智能助手帮我们高效整理资料,助力大数据分析挖掘隐藏在字里行间的价值,还是赋能智能客服瞬间洞察客户身份,亦或是为构建庞大复杂、互联互通的知识图谱添砖加瓦,人名提取技术都宛如一颗关键的螺丝钉,紧紧铆住各个环节。今天,就带大家深入探寻那些超给力的支持从文本中提取人名的开源
- 超级详细,知识图谱系统的理论详解+部署过程
mosquito_lover1
python开发语言知识图谱
知识图谱系统(KnowledgeGraphSystem)是一种用于表示、存储、查询和推理知识的系统。它通过结构化的方式将现实世界中的实体、概念及其相互关系组织成一个图结构,从而帮助机器理解和处理复杂的知识。知识图谱的核心组成部分实体(Entities):实体是知识图谱中的节点,代表现实世界中的对象或概念。例如,人、地点、组织、事件等。示例:BarackObama、NewYorkCity、Googl
- 告别 AI 幻觉:LangChain + 知识图谱 + 大模型,打造可靠的智能应用
海棠AI实验室
AIAgent学习进阶实战人工智能langchain知识图谱Agent
目录前言:知识图谱在AI中的地位什么是知识图谱?为什么要用知识图谱?LangChain简介:它如何与知识图谱结合?项目准备:环境配置与工具选择手把手实现5.1从文本中提取结构化知识存入图谱6.2基于LangChain知识图谱的查询与推理实践Tips:如何让知识图谱规模化、应用化?总结与展望后记1.前言:知识图谱在AI中的地位在当今的人工智能领域,各类语言模型(如GPT系列、BERT等)已经深刻地影
- 内容中台重构智能服务:人工智能技术驱动精准决策
清风徐徐de来
其他
内容概要现代企业数字化转型进程中,内容中台与人工智能技术的深度融合正在重构智能服务的基础架构。通过整合自然语言处理、知识图谱构建与深度学习算法三大技术模块,该架构实现了从数据采集到决策输出的全链路智能化。在数据层,系统可对接CRM、ERP等企业软件,通过标准化接口完成多源异构数据的实时清洗与结构化处理,例如某金融科技平台利用动态知识图谱技术,将分散的客户行为数据与市场情报进行语义关联,形成可解释的
- spring boot基于知识图谱的阿克苏市旅游管理系统python-计算机毕业设计
QQ1963288475
springboot知识图谱旅游pythonvue.jsdjangoflask
目录功能和技术介绍具体实现截图开发核心技术:开发环境开发步骤编译运行核心代码部分展示系统设计详细视频演示可行性论证软件测试源码获取功能和技术介绍该系统基于浏览器的方式进行访问,采用springboot集成快速开发框架,前端使用vue方式,基于es5的语法,开发工具IntelliJIDEAx64,因为该开发工具,内嵌了Tomcat服务运行机制,可不用单独下载Tomcatserver服务器。由于考虑到
- 知识图谱构建概念、工具、实例调研
熟悉的黑曼巴
知识图谱人工智能
一、知识图谱的概念知识图谱(Knowledgegraph)知识图谱是一种用图模型来描述知识和建模世界万物之间的关联关系的技术方法。知识图谱由节点和边组成。节点可以是实体,如一个人、一本书等,或是抽象的概念,如人工智能、知识图谱等。边可以是实体的属性,如姓名、书名或是实体之间的关系,如朋友、配偶。知识图谱的早期理念来自SemanticWeb(语义网络),其最初理想是把基于文本链接的万维网落转化为基于
- FOKS-TROT: 一个高效、易用的全功能开源知识图谱生成工具
柳旖岭
FOKS-TROT:一个高效、易用的全功能开源知识图谱生成工具项目简介FOKS-TROT是一个基于Python的全功能开源知识图谱生成工具,旨在帮助研究人员和开发者快速构建具有丰富信息的知识图谱。该项目由hkx3upper在GitCode上开发并维护。通过FOKS-TROT,您可以轻松地将各种数据源(如文本文件、数据库、API)转换为结构化的知识图谱,并对其进行可视化分析和机器学习任务。此外,该工
- LLM与知识图谱融合:智能运维知识库构建
AI天才研究院
DeepSeekR1&大数据AI人工智能大模型AI大模型企业级应用开发实战AI实战计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
1.背景介绍随着信息技术的飞速发展,IT运维管理面临着越来越大的挑战。海量的设备、复杂的网络环境、日益增长的数据量,使得传统的运维方式难以满足需求。为了提高运维效率和质量,智能运维应运而生。智能运维的核心是将人工智能技术应用于运维领域,通过机器学习、深度学习等算法,实现自动化、智能化的运维管理。其中,大语言模型(LLM)和知识图谱是两个重要的技术方向。LLM能够理解和生成自然语言,可以用于构建智能
- 知识图谱:【知识图谱基础理论(八)】——知识更新
J_Xiong0117
python基础理论自然语言处理知识图谱人工智能自然语言处理
从逻辑上看,知识库的更新包括概念层的更新和数据层的更新。更新的两种方式:数据驱动下的全面更新增量更新
- 知识图谱的作用及其更新方式
甜瓜瓜哥
面试人工智能知识图谱人工智能
知识图谱的作用及其更新方式简介作用1.语义理解和推理2.信息检索3.推荐系统4.自然语言处理5.智能对话系统更新知识图谱的过程1.数据收集2.数据清洗和处理3.知识抽取4.知识融合5.验证和评估6.部署和应用总结简介知识图谱是一种以图形结构表示知识的方法,它包含了实体(如人物、地点、事物)以及它们之间的关系。知识图谱可以用于帮助计算机理解和处理自然语言,进行信息检索,进行推荐系统等多种应用。作用1
- 知识图谱构建:LLM与知识工程的完美结合
AI智能涌现深度研究
AI大模型应用入门实战与进阶DeepSeekR1&大数据AI人工智能计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
1.背景介绍1.1知识爆炸与信息孤岛随着互联网和信息技术的飞速发展,我们正处于一个知识爆炸的时代。海量的数据和信息充斥着我们的生活,但同时也带来了信息过载和信息孤岛的问题。传统的信息检索方式难以有效地组织和利用这些知识,难以满足人们对知识获取和应用的需求。1.2知识图谱的兴起知识图谱作为一种语义网络,能够将实体、概念及其之间的关系以结构化的方式进行表达和存储,从而有效地组织和管理知识。近年来,知识
- Python中LLM的知识图谱构建:动态更新与推理
二进制独立开发
GenAI与Python非纯粹GenAIpython知识图谱开发语言自然语言处理人工智能分布式机器学习
文章目录引言1.知识图谱的基本概念1.1知识图谱的定义1.2知识图谱的构建流程2.利用LLM进行知识抽取2.1实体识别2.2关系抽取2.3属性抽取3.知识融合3.1实体对齐3.2冲突消解4.知识存储5.知识推理5.1规则推理5.2基于LLM的推理6.动态更新6.1增量更新6.2实时更新7.结论引言随着人工智能技术的飞速发展,知识图谱(KnowledgeGraph,KG)作为一种结构化的知识表示方法
- AI编剧系统深度解析:从算法架构到影视工业化应用实战
Coderabo
DeepSeekR1模型企业级应用人工智能算法
媒体娱乐行业革命:AI编剧创意辅助系统架构解析与实战应用一、行业背景与技术架构在流媒体内容需求激增的当下,传统编剧模式面临产能瓶颈。AI编剧创意辅助系统通过自然语言处理(NLP)、生成对抗网络(GAN)和知识图谱技术,构建了包含剧本生成、情节优化、角色塑造等模块的智能创作平台。核心架构分为:知识图谱层:整合影视剧本数据库(IMSDb)、维基百科等结构化数据NLP处理层:基于Transformer的
- 图数据库Neo4j面试内容整理-Neo4j的性能
不务正业的猿
面试Neo4j数据库neo4j面试职场和发展图数据库
Neo4j的性能是它作为图数据库的重要特性之一。Neo4j在处理图数据时,通过优化图的存储、查询和遍历等方面,提供了高效的性能,特别适合用于需要处理复杂关系和多层次连接的应用场景,如社交网络、推荐系统、知识图谱等。以下是Neo4j性能的几个关键方面:1.图数据结构的优势
- 电力知识图谱与大模型的结合:从构建到行业应用的深度解析
Cc不爱吃洋葱
知识图谱人工智能自然语言处理大模型大语言模型LLM语言模型
随着大数据和人工智能技术的飞速发展,电力行业迎来了智能化转型的全新契机。电力知识图谱作为一种将数据转化为结构化知识的技术,正在赋能故障诊断、设备管理、运维优化等核心场景。而当知识图谱与大模型相结合,更能释放强大的知识推理和智能预测能力,为行业智慧化发展注入新动力。本文将从专业视角,深入探讨电力知识图谱的构建过程、大模型的融入方法,以及它们在实际应用中的落地场景。通过具体案例剖析与技术解读,帮助你了
- 知识图谱智能应用系统:数据存储架构与流程解析
梦落青云
知识图谱架构人工智能
在当今数字化时代,知识图谱作为一种强大的知识表示和管理工具,正逐渐成为企业、科研机构以及各类智能应用的核心技术。知识图谱通过将数据转化为结构化的知识网络,不仅能够高效地存储和管理海量信息,还能通过复杂的查询和推理,为用户提供深度的知识洞察。然而,构建一个高效、灵活且可扩展的知识图谱系统并非易事,其中数据存储架构的设计尤为关键。本文将深入解析知识图谱智能应用系统中的数据存储架构,探讨如何通过分层存储
- 知识图谱neo4j—利用python进行知识入库
gcl_code
知识图谱neo4j知识图谱python
知识图谱neo4j—利用python进行知识入库知识图谱—利用python进行知识入库作为一个写sql出生的菜鸡,在这里分享一下去年11月到12月之间研究的关于知识图谱的课题相关知识,由于客户的原因最终该项目没有继续进行下去,但是有些经验还是可以跟大家分享一下,理论知识就不说了,很多人已经有类似的分享了,这边分享一个我自己用python写的导入neo4j的脚本,能达到1秒入库4000条左右记录数据
- 基于医疗知识图谱的问答系统 基于知识图谱的多轮问答 附完整代码数据详细教程
计算机毕设论文
深度学习-自然语言处理nlp医疗知识知识图谱Neo4j多轮问答
这个项目已实现的功能:1.闲聊类的单论对话2.基于知识图谱的多轮问答数据链接:链接:https://pan.baidu.com/s/1oPr1m8aaIeoMu53OIEULPg提取码:fh39一、项目来源由于之前用Rasa构建过对话系统,因此一直想脱离Rasa这个开源框架,从底层开始构建一个可以实现相似功能的对话系统,毕竟框架用的再溜,都不如自己做一遍。恰巧在Rasa群里看到了前辈分享的一个项目
- 知识图谱大模型系列之 11什么是 Neo4j LLM 知识图谱构建器?
知识大胖
NVIDIAGPU和大语言模型开发教程知识图谱neo4j人工智能llm
简介LLM知识图谱构建器是Neo4j的GraphRAG生态系统工具之一,可让您将非结构化数据转换为动态知识图谱。它与检索增强生成(RAG)聊天机器人集成,可实现自然语言查询和对数据的可解释洞察。推荐文章《使用ChatGPT从视频脚本创建知识图谱,使用GPT-4作为领域专家来帮助您从视频转录中提取知识(教程含完整源码)》权重2,知识图谱类《赋能知识图谱形成:利用BERTopic、DataMapPlo
- 大数据知识图谱之深度学习——基于BERT+LSTM+CRF深度学习识别模型医疗知识图谱问答可视化系统_bert+lstm
2301_76348014
程序员深度学习大数据知识图谱
文章目录大数据知识图谱之深度学习——基于BERT+LSTM+CRF深度学习识别模型医疗知识图谱问答可视化系统一、项目概述二、系统实现基本流程三、项目工具所用的版本号四、所需要软件的安装和使用五、开发技术简介Django技术介绍Neo4j数据库Bootstrap4框架Echarts简介NavicatPremium15简介Layui简介Python语言介绍MySQL数据库深度学习六、核心理论贪心算法A
- 构建知识图谱之二(知识图谱构建技术)
tomlone
知识谱图知识图谱人工智能
ArchitectureofKnowledgeGraphConstructionTechniques知识图谱构建技术论文链接:https://acadpubl.eu/jsi/2018-118-19/articles/19b/24.pdf1.为什么我们需要构建知识图谱?构建知识图谱对于保险行业的意义在于它能够将分散的、复杂的行业数据连接起来,促进智能化决策、增强风险控制能力、提高效率并优化客户体验。
- 李宏毅机器学习31——GAN(3)
zeng-233
摘要:这节课学习条件生成下GAN的应用(CGAN)。conditionalGAN是指在有生成条件的前提下,通过对抗生成网络的方法,进行图像的生成。首先文字生成图片为例,加入GAN的方法,将文字和生成图片联系起来,输入到生成式中。这样解决了传统方法下,生成的图片不够真实的问题。之后又对这个方法进行了改进,将生成式的输入和输出同时输入到判别式,使文字和图片作为一对数据联系起来。之后又提出了一种新的判别
- 大模型prompt实例:知识库信息质量校验模块
写代码的中青年
大模型prompt人工智能python大模型LLM
大模型相关目录大模型,包括部署微调prompt/Agent应用开发、知识库增强、数据库增强、知识图谱增强、自然语言处理、多模态等大模型应用开发内容从0起步,扬帆起航。大模型应用向开发路径:AI代理工作流大模型应用开发实用开源项目汇总大模型问答项目问答性能评估方法大模型数据侧总结大模型token等基本概念及参数和内存的关系大模型应用开发-华为大模型生态规划从零开始的LLaMA-Factory的指令增
- Nginx负载均衡
510888780
nginx应用服务器
Nginx负载均衡一些基础知识:
nginx 的 upstream目前支持 4 种方式的分配
1)、轮询(默认)
每个请求按时间顺序逐一分配到不同的后端服务器,如果后端服务器down掉,能自动剔除。
2)、weight
指定轮询几率,weight和访问比率成正比
- RedHat 6.4 安装 rabbitmq
bylijinnan
erlangrabbitmqredhat
在 linux 下安装软件就是折腾,首先是测试机不能上外网要找运维开通,开通后发现测试机的 yum 不能使用于是又要配置 yum 源,最后安装 rabbitmq 时也尝试了两种方法最后才安装成功
机器版本:
[root@redhat1 rabbitmq]# lsb_release
LSB Version: :base-4.0-amd64:base-4.0-noarch:core
- FilenameUtils工具类
eksliang
FilenameUtilscommon-io
转载请出自出处:http://eksliang.iteye.com/blog/2217081 一、概述
这是一个Java操作文件的常用库,是Apache对java的IO包的封装,这里面有两个非常核心的类FilenameUtils跟FileUtils,其中FilenameUtils是对文件名操作的封装;FileUtils是文件封装,开发中对文件的操作,几乎都可以在这个框架里面找到。 非常的好用。
- xml文件解析SAX
不懂事的小屁孩
xml
xml文件解析:xml文件解析有四种方式,
1.DOM生成和解析XML文档(SAX是基于事件流的解析)
2.SAX生成和解析XML文档(基于XML文档树结构的解析)
3.DOM4J生成和解析XML文档
4.JDOM生成和解析XML
本文章用第一种方法进行解析,使用android常用的DefaultHandler
import org.xml.sax.Attributes;
- 通过定时任务执行mysql的定期删除和新建分区,此处是按日分区
酷的飞上天空
mysql
使用python脚本作为命令脚本,linux的定时任务来每天定时执行
#!/usr/bin/python
# -*- coding: utf8 -*-
import pymysql
import datetime
import calendar
#要分区的表
table_name = 'my_table'
#连接数据库的信息
host,user,passwd,db =
- 如何搭建数据湖架构?听听专家的意见
蓝儿唯美
架构
Edo Interactive在几年前遇到一个大问题:公司使用交易数据来帮助零售商和餐馆进行个性化促销,但其数据仓库没有足够时间去处理所有的信用卡和借记卡交易数据
“我们要花费27小时来处理每日的数据量,”Edo主管基础设施和信息系统的高级副总裁Tim Garnto说道:“所以在2013年,我们放弃了现有的基于PostgreSQL的关系型数据库系统,使用了Hadoop集群作为公司的数
- spring学习——控制反转与依赖注入
a-john
spring
控制反转(Inversion of Control,英文缩写为IoC)是一个重要的面向对象编程的法则来削减计算机程序的耦合问题,也是轻量级的Spring框架的核心。 控制反转一般分为两种类型,依赖注入(Dependency Injection,简称DI)和依赖查找(Dependency Lookup)。依赖注入应用比较广泛。
- 用spool+unixshell生成文本文件的方法
aijuans
xshell
例如我们把scott.dept表生成文本文件的语句写成dept.sql,内容如下:
set pages 50000;
set lines 200;
set trims on;
set heading off;
spool /oracle_backup/log/test/dept.lst;
select deptno||','||dname||','||loc
- 1、基础--名词解析(OOA/OOD/OOP)
asia007
学习基础知识
OOA:Object-Oriented Analysis(面向对象分析方法)
是在一个系统的开发过程中进行了系统业务调查以后,按照面向对象的思想来分析问题。OOA与结构化分析有较大的区别。OOA所强调的是在系统调查资料的基础上,针对OO方法所需要的素材进行的归类分析和整理,而不是对管理业务现状和方法的分析。
OOA(面向对象的分析)模型由5个层次(主题层、对象类层、结构层、属性层和服务层)
- 浅谈java转成json编码格式技术
百合不是茶
json编码java转成json编码
json编码;是一个轻量级的数据存储和传输的语言
在java中需要引入json相关的包,引包方式在工程的lib下就可以了
JSON与JAVA数据的转换(JSON 即 JavaScript Object Natation,它是一种轻量级的数据交换格式,非
常适合于服务器与 JavaScript 之间的数据的交
- web.xml之Spring配置(基于Spring+Struts+Ibatis)
bijian1013
javaweb.xmlSSIspring配置
指定Spring配置文件位置
<context-param>
<param-name>contextConfigLocation</param-name>
<param-value>
/WEB-INF/spring-dao-bean.xml,/WEB-INF/spring-resources.xml,
/WEB-INF/
- Installing SonarQube(Fail to download libraries from server)
sunjing
InstallSonar
1. Download and unzip the SonarQube distribution
2. Starting the Web Server
The default port is "9000" and the context path is "/". These values can be changed in &l
- 【MongoDB学习笔记十一】Mongo副本集基本的增删查
bit1129
mongodb
一、创建复本集
假设mongod,mongo已经配置在系统路径变量上,启动三个命令行窗口,分别执行如下命令:
mongod --port 27017 --dbpath data1 --replSet rs0
mongod --port 27018 --dbpath data2 --replSet rs0
mongod --port 27019 -
- Anychart图表系列二之执行Flash和HTML5渲染
白糖_
Flash
今天介绍Anychart的Flash和HTML5渲染功能
HTML5
Anychart从6.0第一个版本起,已经逐渐开始支持各种图的HTML5渲染效果了,也就是说即使你没有安装Flash插件,只要浏览器支持HTML5,也能看到Anychart的图形(不过这些是需要做一些配置的)。
这里要提醒下大家,Anychart6.0版本对HTML5的支持还不算很成熟,目前还处于
- Laravel版本更新异常4.2.8-> 4.2.9 Declaration of ... CompilerEngine ... should be compa
bozch
laravel
昨天在为了把laravel升级到最新的版本,突然之间就出现了如下错误:
ErrorException thrown with message "Declaration of Illuminate\View\Engines\CompilerEngine::handleViewException() should be compatible with Illuminate\View\Eng
- 编程之美-NIM游戏分析-石头总数为奇数时如何保证先动手者必胜
bylijinnan
编程之美
import java.util.Arrays;
import java.util.Random;
public class Nim {
/**编程之美 NIM游戏分析
问题:
有N块石头和两个玩家A和B,玩家A先将石头随机分成若干堆,然后按照BABA...的顺序不断轮流取石头,
能将剩下的石头一次取光的玩家获胜,每次取石头时,每个玩家只能从若干堆石头中任选一堆,
- lunce创建索引及简单查询
chengxuyuancsdn
查询创建索引lunce
import java.io.File;
import java.io.IOException;
import org.apache.lucene.analysis.Analyzer;
import org.apache.lucene.analysis.standard.StandardAnalyzer;
import org.apache.lucene.document.Docume
- [IT与投资]坚持独立自主的研究核心技术
comsci
it
和别人合作开发某项产品....如果互相之间的技术水平不同,那么这种合作很难进行,一般都会成为强者控制弱者的方法和手段.....
所以弱者,在遇到技术难题的时候,最好不要一开始就去寻求强者的帮助,因为在我们这颗星球上,生物都有一种控制其
- flashback transaction闪回事务查询
daizj
oraclesql闪回事务
闪回事务查询有别于闪回查询的特点有以下3个:
(1)其正常工作不但需要利用撤销数据,还需要事先启用最小补充日志。
(2)返回的结果不是以前的“旧”数据,而是能够将当前数据修改为以前的样子的撤销SQL(Undo SQL)语句。
(3)集中地在名为flashback_transaction_query表上查询,而不是在各个表上通过“as of”或“vers
- Java I/O之FilenameFilter类列举出指定路径下某个扩展名的文件
游其是你
FilenameFilter
这是一个FilenameFilter类用法的例子,实现的列举出“c:\\folder“路径下所有以“.jpg”扩展名的文件。 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
- C语言学习五函数,函数的前置声明以及如何在软件开发中合理的设计函数来解决实际问题
dcj3sjt126com
c
# include <stdio.h>
int f(void) //括号中的void表示该函数不能接受数据,int表示返回的类型为int类型
{
return 10; //向主调函数返回10
}
void g(void) //函数名前面的void表示该函数没有返回值
{
//return 10; //error 与第8行行首的void相矛盾
}
in
- 今天在测试环境使用yum安装,遇到一个问题: Error: Cannot retrieve metalink for repository: epel. Pl
dcj3sjt126com
centos
今天在测试环境使用yum安装,遇到一个问题:
Error: Cannot retrieve metalink for repository: epel. Please verify its path and try again
处理很简单,修改文件“/etc/yum.repos.d/epel.repo”, 将baseurl的注释取消, mirrorlist注释掉。即可。
&n
- 单例模式
shuizhaosi888
单例模式
单例模式 懒汉式
public class RunMain {
/**
* 私有构造
*/
private RunMain() {
}
/**
* 内部类,用于占位,只有
*/
private static class SingletonRunMain {
priv
- Spring Security(09)——Filter
234390216
Spring Security
Filter
目录
1.1 Filter顺序
1.2 添加Filter到FilterChain
1.3 DelegatingFilterProxy
1.4 FilterChainProxy
1.5
- 公司项目NODEJS实践0.1
逐行分析JS源代码
mongodbnginxubuntunodejs
一、前言
前端如何独立用nodeJs实现一个简单的注册、登录功能,是不是只用nodejs+sql就可以了?其实是可以实现,但离实际应用还有距离,那要怎么做才是实际可用的。
网上有很多nod
- java.lang.Math
liuhaibo_ljf
javaMathlang
System.out.println(Math.PI);
System.out.println(Math.abs(1.2));
System.out.println(Math.abs(1.2));
System.out.println(Math.abs(1));
System.out.println(Math.abs(111111111));
System.out.println(Mat
- linux下时间同步
nonobaba
ntp
今天在linux下做hbase集群的时候,发现hmaster启动成功了,但是用hbase命令进入shell的时候报了一个错误 PleaseHoldException: Master is initializing,查看了日志,大致意思是说master和slave时间不同步,没办法,只好找一种手动同步一下,后来发现一共部署了10来台机器,手动同步偏差又比较大,所以还是从网上找现成的解决方
- ZooKeeper3.4.6的集群部署
roadrunners
zookeeper集群部署
ZooKeeper是Apache的一个开源项目,在分布式服务中应用比较广泛。它主要用来解决分布式应用中经常遇到的一些数据管理问题,如:统一命名服务、状态同步、集群管理、配置文件管理、同步锁、队列等。这里主要讲集群中ZooKeeper的部署。
1、准备工作
我们准备3台机器做ZooKeeper集群,分别在3台机器上创建ZooKeeper需要的目录。
数据存储目录
- Java高效读取大文件
tomcat_oracle
java
读取文件行的标准方式是在内存中读取,Guava 和Apache Commons IO都提供了如下所示快速读取文件行的方法: Files.readLines(new File(path), Charsets.UTF_8); FileUtils.readLines(new File(path)); 这种方法带来的问题是文件的所有行都被存放在内存中,当文件足够大时很快就会导致
- 微信支付api返回的xml转换为Map的方法
xu3508620
xmlmap微信api
举例如下:
<xml>
<return_code><![CDATA[SUCCESS]]></return_code>
<return_msg><![CDATA[OK]]></return_msg>
<appid><