深度补偿模型sparse-to-dense测试

原始链接

GitHub - fangchangma/sparse-to-dense.pytorch: ICRA 2018 "Sparse-to-Dense: Depth Prediction from Sparse Depth Samples and a Single Image" (PyTorch Implementation)

 1.数据说明

        第一列是场景原图,第二列是稀疏数据,第三列是稠密数据,第四列是该模型的预测结果

该模型有三种训练模式:1.第一列RGB作为图像输入,第三列作为标签;2.第一列和第二列合并为4通道数据作为图像输入,第三列作为标签;3.第二列作为输入,第三列作为标签。

其中第二列是通过第三列采样得到。采样方式有两种,在dataloaders/dense_to_sparse.py脚本中,如果要跑自己的数据集那么需要准备的是第一列和第三列数据。

 这个数据有30G左右,比较大,我下载了,网盘链接链接:https://pan.baidu.com/s/1SzQhDVZBJSy9gnMkr4UCMQ 
提取码:tpql 
--来自百度网盘超级会员V6的分享

解压后如下:

深度补偿模型sparse-to-dense测试_第1张图片

深度补偿模型sparse-to-dense测试_第2张图片

         这里的h5文件其实就是数据的一种存储形式而已,内部结构和字典类似,在代码里有加载的函数(dataloaders/dataloader.py脚本中的h5_loader函数),包含了rgb和对应的depth数据。

2.跑val数据(需要输入标签,rgbd模式)

        该项目通过设置evaluate模式来做评价,下载好数据、模型后,直接创建数据文件夹data放解压的数据即可。然后命令行输入python main.py --evaluate model_best.pth会自动创建结果文件夹results,以及产生一个拼接的长图comparison_7.png

深度补偿模型sparse-to-dense测试_第3张图片

深度补偿模型sparse-to-dense测试_第4张图片

 3.自建test数据测试(无需输入标签,rgbd模式)

         这个需要得到和val相同的效果,并且批量跑的情况下,需要在val的基础上改,改的地方比较多,下面我把改了的脚本都贴出来。

        (1)数据加载部分

        nyu_dataloader.py

import numpy as np
import dataloaders.transforms as transforms
from dataloaders.dataloader import MyDataloader

iheight, iwidth = 480, 640 # raw image size

class NYUDataset(MyDataloader):
    def __init__(self, root, type, sparsifier=None, modality='rgb'):
        super(NYUDataset, self).__init__(root, type, sparsifier, modality)
        self.output_size = (228, 304)

    def train_transform(self, rgb, depth):
        s = np.random.uniform(1.0, 1.5) # random scaling
        depth_np = depth / s
        angle = np.random.uniform(-5.0, 5.0) # random rotation degrees
        do_flip = np.random.uniform(0.0, 1.0) < 0.5 # random horizontal flip

        # perform 1st step of data augmentation
        transform = transforms.Compose([
            transforms.Resize(250.0 / iheight), # this is for computational efficiency, since rotation can be slow
            transforms.Rotate(angle),
            transforms.Resize(s),
            transforms.CenterCrop(self.output_size),
            transforms.HorizontalFlip(do_flip)
        ])
        rgb_np = transform(rgb)
        rgb_np = self.color_jitter(rgb_np) # random color jittering
        rgb_np = np.asfarray(rgb_np, dtype='float') / 255
        depth_np = transform(depth_np)

        return rgb_np, depth_np

    def val_transform(self, rgb, depth):
        depth_np = depth
        transform = transforms.Compose([
            transforms.Resize(240.0 / iheight),
            transforms.CenterCrop(self.output_size),
        ])
        rgb_np = transform(rgb)
        rgb_np = np.asfarray(rgb_np, dtype='float') / 255
        depth_np = transform(depth_np)
        return rgb_np, depth_np

    def test_transform(self, rgb, depth):
        depth_np = depth
        transform = transforms.Compose([
            transforms.Resize(240.0 / iheight),
            transforms.CenterCrop(self.output_size),
        ])
        rgb_np = transform(rgb)
        rgb_np = np.asfarray(rgb_np, dtype='float') / 255
        depth_np = transform(depth_np)

        return rgb_np, depth_np

        dataloader.py

import os
import os.path
import numpy as np
import torch.utils.data as data
import h5py
import dataloaders.transforms as transforms

IMG_EXTENSIONS = ['.h5',]

def is_image_file(filename):
    return any(filename.endswith(extension) for extension in IMG_EXTENSIONS)

def find_classes(dir):
    classes = [d for d in os.listdir(dir) if os.path.isdir(os.path.join(dir, d))]
    classes.sort()
    class_to_idx = {classes[i]: i for i in range(len(classes))}
    return classes, class_to_idx

def make_dataset(dir, class_to_idx):
    images = []
    dir = os.path.expanduser(dir)
    for target in sorted(os.listdir(dir)):
        d = os.path.join(dir, target)
        if not os.path.isdir(d):
            continue
        for root, _, fnames in sorted(os.walk(d)):
            for fname in sorted(fnames):
                if is_image_file(fname):
                    path = os.path.join(root, fname)
                    item = (path, class_to_idx[target])
                    images.append(item)
    return images

def h5_loader(path):
    h5f = h5py.File(path, "r")
    rgb = np.array(h5f['rgb'])
    rgb = np.transpose(rgb, (1, 2, 0))
    depth = np.array(h5f['depth'])
    return rgb, depth

# def rgb2grayscale(rgb):
#     return rgb[:,:,0] * 0.2989 + rgb[:,:,1] * 0.587 + rgb[:,:,2] * 0.114

to_tensor = transforms.ToTensor()

class MyDataloader(data.Dataset):
    modality_names = ['rgb', 'rgbd', 'd'] # , 'g', 'gd'
    color_jitter = transforms.ColorJitter(0.4, 0.4, 0.4)

    def __init__(self, root, type, sparsifier=None, modality='rgb', loader=h5_loader):
        classes, class_to_idx = find_classes(root)
        imgs = make_dataset(root, class_to_idx)
        assert len(imgs)>0, "Found 0 images in subfolders of: " + root + "\n"
        print("Found {} images in {} folder.".format(len(imgs), type))
        self.root = root
        self.imgs = imgs
        self.classes = classes
        self.class_to_idx = class_to_idx
        if type == 'train':
            self.transform = self.train_transform
        elif type == 'val':
            self.transform = self.val_transform
        elif type == 'test':
            self.transform = self.test_transform
        else:
            raise (RuntimeError("Invalid dataset type: " + type + "\n"
                                "Supported dataset types are: train, val"))
        self.loader = loader
        self.sparsifier = sparsifier

        assert (modality in self.modality_names), "Invalid modality type: " + modality + "\n" + \
                                "Supported dataset types are: " + ''.join(self.modality_names)
        self.modality = modality

        self.mark = type

    def train_transform(self, rgb, depth):
        raise (RuntimeError("train_transform() is not implemented. "))

    def val_transform(rgb, depth):
        raise (RuntimeError("val_transform() is not implemented."))

    def test_transform(rgb, depth):
        raise (RuntimeError("test_transform() is not implemented."))

    def create_sparse_depth(self, rgb, depth):
        if self.sparsifier is None:
            return depth
        else:
            mask_keep = self.sparsifier.dense_to_sparse(rgb, depth)
            sparse_depth = np.zeros(depth.shape)
            sparse_depth[mask_keep] = depth[mask_keep]
            return sparse_depth

    def create_rgbd(self, rgb, depth):
        sparse_depth = self.create_sparse_depth(rgb, depth)
        rgbd = np.append(rgb, np.expand_dims(sparse_depth, axis=2), axis=2)
        return rgbd

    def __getraw__(self, index):
        """
        Args:
            index (int): Index

        Returns:
            tuple: (rgb, depth) the raw data.
        """
        path, target = self.imgs[index]
        rgb, depth = self.loader(path)
        _, name = os.path.split(path)
        name = name.split('.')[0]
        return rgb, depth, name

    def __getitem__(self, index):
        rgb, depth, name = self.__getraw__(index)
        if self.transform is not None:
            rgb_np, depth_np = self.transform(rgb, depth)
        else:
            raise(RuntimeError("transform not defined"))

        # color normalization
        # rgb_tensor = normalize_rgb(rgb_tensor)
        # rgb_np = normalize_np(rgb_np)

        if self.modality == 'rgb':
            input_np = rgb_np
        elif self.modality == 'rgbd':
            input_np = self.create_rgbd(rgb_np, depth_np)
        elif self.modality == 'd':
            input_np = self.create_sparse_depth(rgb_np, depth_np)

        input_tensor = to_tensor(input_np)
        while input_tensor.dim() < 3:
            input_tensor = input_tensor.unsqueeze(0)

        if self.mark == 'test':
            depth_tensor = name
        else:
            depth_tensor = to_tensor(depth_np)
            depth_tensor = depth_tensor.unsqueeze(0)

        return input_tensor, depth_tensor

    def __len__(self):
        return len(self.imgs)

        2.参数部分

        util.py

import os

import cv2
import torch
import shutil
import numpy as np
import matplotlib.pyplot as plt
from PIL import Image

cmap = plt.cm.viridis

def parse_command():
    model_names = ['resnet18', 'resnet50']
    loss_names = ['l1', 'l2']
    data_names = ['nyudepthv2', 'kitti']
    from dataloaders.dense_to_sparse import UniformSampling, SimulatedStereo
    sparsifier_names = [x.name for x in [UniformSampling, SimulatedStereo]]
    from models import Decoder
    decoder_names = Decoder.names
    from dataloaders.dataloader import MyDataloader
    modality_names = MyDataloader.modality_names

    import argparse
    parser = argparse.ArgumentParser(description='Sparse-to-Dense')
    parser.add_argument('--arch', '-a', metavar='ARCH', default='resnet18', choices=model_names,
                        help='model architecture: ' + ' | '.join(model_names) + ' (default: resnet18)')
    parser.add_argument('--data', metavar='DATA', default='nyudepthv2',
                        choices=data_names,
                        help='dataset: ' + ' | '.join(data_names) + ' (default: nyudepthv2)')
    parser.add_argument('--modality', '-m', metavar='MODALITY', default='rgb', choices=modality_names,
                        help='modality: ' + ' | '.join(modality_names) + ' (default: rgb)')
    parser.add_argument('-s', '--num-samples', default=0, type=int, metavar='N',
                        help='number of sparse depth samples (default: 0)')
    parser.add_argument('--max-depth', default=-1.0, type=float, metavar='D',
                        help='cut-off depth of sparsifier, negative values means infinity (default: inf [m])')
    parser.add_argument('--sparsifier', metavar='SPARSIFIER', default=UniformSampling.name, choices=sparsifier_names,
                        help='sparsifier: ' + ' | '.join(sparsifier_names) + ' (default: ' + UniformSampling.name + ')')
    parser.add_argument('--decoder', '-d', metavar='DECODER', default='deconv2', choices=decoder_names,
                        help='decoder: ' + ' | '.join(decoder_names) + ' (default: deconv2)')
    parser.add_argument('-j', '--workers', default=0, type=int, metavar='N',
                        help='number of data loading workers (default: 10)')
    parser.add_argument('--epochs', default=15, type=int, metavar='N',
                        help='number of total epochs to run (default: 15)')
    parser.add_argument('-c', '--criterion', metavar='LOSS', default='l1', choices=loss_names,
                        help='loss function: ' + ' | '.join(loss_names) + ' (default: l1)')
    parser.add_argument('-b', '--batch-size', default=2, type=int, help='mini-batch size (default: 8)')
    parser.add_argument('--lr', '--learning-rate', default=0.01, type=float,
                        metavar='LR', help='initial learning rate (default 0.01)')
    parser.add_argument('--momentum', default=0.9, type=float, metavar='M',
                        help='momentum')
    parser.add_argument('--weight-decay', '--wd', default=1e-4, type=float,
                        metavar='W', help='weight decay (default: 1e-4)')
    parser.add_argument('--print-freq', '-p', default=10, type=int,
                        metavar='N', help='print frequency (default: 10)')
    parser.add_argument('--resume', default='', type=str, metavar='PATH',
                        help='path to latest checkpoint (default: none)')
    parser.add_argument('-e', '--evaluate', dest='evaluate', type=str, default='',
                        help='evaluate model on validation set')
    parser.add_argument('-t', '--test', dest='test', type=str, default='',
                        help='test model on test set')
    parser.add_argument('--no-pretrain', dest='pretrained', action='store_false',
                        help='not to use ImageNet pre-trained weights')
    parser.set_defaults(pretrained=True)
    args = parser.parse_args()
    if args.modality == 'rgb' and args.num_samples != 0:
        print("number of samples is forced to be 0 when input modality is rgb")
        args.num_samples = 0
    if args.modality == 'rgb' and args.max_depth != 0.0:
        print("max depth is forced to be 0.0 when input modality is rgb/rgbd")
        args.max_depth = 0.0
    return args

def save_checkpoint(state, is_best, epoch, output_directory):
    checkpoint_filename = os.path.join(output_directory, 'checkpoint-' + str(epoch) + '.pth.tar')
    torch.save(state, checkpoint_filename)
    if is_best:
        best_filename = os.path.join(output_directory, 'model_best.pth.tar')
        shutil.copyfile(checkpoint_filename, best_filename)
    if epoch > 0:
        prev_checkpoint_filename = os.path.join(output_directory, 'checkpoint-' + str(epoch-1) + '.pth.tar')
        if os.path.exists(prev_checkpoint_filename):
            os.remove(prev_checkpoint_filename)

def adjust_learning_rate(optimizer, epoch, lr_init):
    """Sets the learning rate to the initial LR decayed by 10 every 5 epochs"""
    lr = lr_init * (0.1 ** (epoch // 5))
    for param_group in optimizer.param_groups:
        param_group['lr'] = lr

def get_output_directory(args):
    output_directory = os.path.join('results',
        '{}.sparsifier={}.samples={}.modality={}.arch={}.decoder={}.criterion={}.lr={}.bs={}.pretrained={}'.
        format(args.data, args.sparsifier, args.num_samples, args.modality, \
            args.arch, args.decoder, args.criterion, args.lr, args.batch_size, \
            args.pretrained))
    return output_directory


def colored_depthmap(depth, d_min=None, d_max=None):
    if d_min is None:
        d_min = np.min(depth)
    if d_max is None:
        d_max = np.max(depth)
    depth_relative = (depth - d_min) / (d_max - d_min)
    return 255 * cmap(depth_relative)[:,:,:3] # H, W, C


def merge_into_row(input, depth_target, depth_pred):
    rgb = 255 * np.transpose(np.squeeze(input.cpu().numpy()), (1,2,0)) # H, W, C
    depth_target_cpu = np.squeeze(depth_target.cpu().numpy())
    depth_pred_cpu = np.squeeze(depth_pred.data.cpu().numpy())

    d_min = min(np.min(depth_target_cpu), np.min(depth_pred_cpu))
    d_max = max(np.max(depth_target_cpu), np.max(depth_pred_cpu))
    depth_target_col = colored_depthmap(depth_target_cpu, d_min, d_max)
    depth_pred_col = colored_depthmap(depth_pred_cpu, d_min, d_max)
    img_merge = np.hstack([rgb, depth_target_col, depth_pred_col])
    
    return img_merge


def merge_into_row_with_gt(input, depth_input, depth_target, depth_pred):
    rgb = 255 * np.transpose(np.squeeze(input.cpu().numpy()), (1,2,0)) # H, W, C
    depth_input_cpu = np.squeeze(depth_input.cpu().numpy())
    depth_target_cpu = np.squeeze(depth_target.cpu().numpy())
    depth_pred_cpu = np.squeeze(depth_pred.data.cpu().numpy())

    d_min = min(np.min(depth_input_cpu), np.min(depth_target_cpu), np.min(depth_pred_cpu))
    d_max = max(np.max(depth_input_cpu), np.max(depth_target_cpu), np.max(depth_pred_cpu))
    depth_input_col = colored_depthmap(depth_input_cpu, d_min, d_max)
    depth_target_col = colored_depthmap(depth_target_cpu, d_min, d_max)
    depth_pred_col = colored_depthmap(depth_pred_cpu, d_min, d_max)

    img_merge = np.hstack([rgb, depth_input_col, depth_target_col, depth_pred_col])

    return img_merge


def add_row(img_merge, row):
    return np.vstack([img_merge, row])


def save_image(img_merge, filename):
    img_merge = Image.fromarray(img_merge.astype('uint8'))
    img_merge.save(filename)


def strentch_img(pred):
    depth_pred_cpu = np.squeeze(pred.data.cpu().numpy())
    d_min = np.min(depth_pred_cpu)
    d_max = np.max(depth_pred_cpu)
    depth_pred_cpu = cv2.resize(depth_pred_cpu, (1280, 720))
    depth_pred_col = colored_depthmap(depth_pred_cpu, d_min, d_max)
    return depth_pred_col

        (3)主函数部分

        main.py

import os
import time
import csv
import numpy as np

import torch
import torch.backends.cudnn as cudnn
import torch.optim
cudnn.benchmark = True

from models import ResNet
from metrics import AverageMeter, Result
from dataloaders.dense_to_sparse import UniformSampling, SimulatedStereo
import criteria
import utils
from PIL import Image

torch.nn.Module.dump_patches = True
args = utils.parse_command()
print(args)

fieldnames = ['mse', 'rmse', 'absrel', 'lg10', 'mae',
                'delta1', 'delta2', 'delta3',
                'data_time', 'gpu_time']
best_result = Result()
best_result.set_to_worst()

def create_data_loaders(args):
    # Data loading code
    print("=> creating data loaders ...")
    traindir = os.path.join('data', args.data, 'train')
    valdir = os.path.join('data', args.data, 'val')
    testdir = os.path.join('data', args.data, 'test')

    train_loader = None
    val_loader = None
    test_loader = None


    # sparsifier is a class for generating random sparse depth input from the ground truth
    sparsifier = None
    max_depth = args.max_depth if args.max_depth >= 0.0 else np.inf
    if args.sparsifier == UniformSampling.name:
        sparsifier = UniformSampling(num_samples=args.num_samples, max_depth=max_depth)
    elif args.sparsifier == SimulatedStereo.name:
        sparsifier = SimulatedStereo(num_samples=args.num_samples, max_depth=max_depth)

    if args.data == 'nyudepthv2':
        from dataloaders.nyu_dataloader import NYUDataset
        if args.evaluate:
            val_dataset = NYUDataset(valdir, type='val',
                modality=args.modality, sparsifier=sparsifier)
            # set batch size to be 1 for validation
            val_loader = torch.utils.data.DataLoader(val_dataset,
                                                     batch_size=1, shuffle=False, num_workers=args.workers,
                                                     pin_memory=True)
        elif args.test:
            test_dataset = NYUDataset(testdir, type='test',
                                     modality=args.modality, sparsifier=sparsifier)

            test_loader = torch.utils.data.DataLoader(test_dataset,
                                                      batch_size=1, shuffle=False, num_workers=args.workers,
                                                      pin_memory=True)
        else:
            train_dataset = NYUDataset(traindir, type='train',
                modality=args.modality, sparsifier=sparsifier)

    elif args.data == 'kitti':
        from dataloaders.kitti_dataloader import KITTIDataset
        if not args.evaluate:
            train_dataset = KITTIDataset(traindir, type='train',
                modality=args.modality, sparsifier=sparsifier)
        val_dataset = KITTIDataset(valdir, type='val',
            modality=args.modality, sparsifier=sparsifier)

        # set batch size to be 1 for validation
        val_loader = torch.utils.data.DataLoader(val_dataset,
                                                 batch_size=1, shuffle=False, num_workers=args.workers,
                                                 pin_memory=True)

    else:
        raise RuntimeError('Dataset not found.' +
                           'The dataset must be either of nyudepthv2 or kitti.')


    # put construction of train loader here, for those who are interested in testing only
    if not args.evaluate and not args.test:
        train_loader = torch.utils.data.DataLoader(
            train_dataset, batch_size=args.batch_size, shuffle=True,
            num_workers=args.workers, pin_memory=True, sampler=None,
            worker_init_fn=lambda work_id:np.random.seed(work_id))
            # worker_init_fn ensures different sampling patterns for each data loading thread

    print("=> data loaders created.")
    return train_loader, val_loader, test_loader

test_save_path = './results/'
def main():
    global args, best_result, output_directory, train_csv, test_csv

    # evaluation mode
    start_epoch = 0
    if args.evaluate:
        assert os.path.isfile(args.evaluate), \
        "=> no best model found at '{}'".format(args.evaluate)
        print("=> loading best model '{}'".format(args.evaluate))
        checkpoint = torch.load(args.evaluate)
        output_directory = os.path.dirname(args.evaluate)
        args = checkpoint['args']
        start_epoch = checkpoint['epoch'] + 1
        best_result = checkpoint['best_result']
        model = checkpoint['model']
        print("=> loaded best model (epoch {})".format(checkpoint['epoch']))
        args.test = ''
        args.evaluate = True
        _, val_loader, _ = create_data_loaders(args)
        validate(val_loader, model, checkpoint['epoch'], write_to_file=False)
        return

    elif args.test:
        assert os.path.isfile(args.test), \
        "=> no best model found at '{}'".format(args.test)
        print("=> loading best model '{}'".format(args.test))
        checkpoint = torch.load(args.test)
        output_directory = os.path.dirname(args.test)
        args = checkpoint['args']
        start_epoch = checkpoint['epoch'] + 1
        best_result = checkpoint['best_result']
        model = checkpoint['model']
        print("=> loaded best model (epoch {})".format(checkpoint['epoch']))
        args.test = True
        _, _, test_loader = create_data_loaders(args)
        test(test_loader, model, test_save_path)
        return

    # optionally resume from a checkpoint
    elif args.resume:
        chkpt_path = args.resume
        assert os.path.isfile(chkpt_path), \
            "=> no checkpoint found at '{}'".format(chkpt_path)
        print("=> loading checkpoint '{}'".format(chkpt_path))
        checkpoint = torch.load(chkpt_path)
        args = checkpoint['args']
        start_epoch = checkpoint['epoch'] + 1
        best_result = checkpoint['best_result']
        model = checkpoint['model']
        optimizer = checkpoint['optimizer']
        output_directory = os.path.dirname(os.path.abspath(chkpt_path))
        print("=> loaded checkpoint (epoch {})".format(checkpoint['epoch']))
        train_loader, val_loader, test_loader = create_data_loaders(args)
        args.resume = True

    # create new model
    else:
        train_loader, val_loader, test_loader = create_data_loaders(args)
        print("=> creating Model ({}-{}) ...".format(args.arch, args.decoder))
        in_channels = len(args.modality)
        if args.arch == 'resnet50':
            model = ResNet(layers=50, decoder=args.decoder, output_size=train_loader.dataset.output_size,
                in_channels=in_channels, pretrained=args.pretrained)
        elif args.arch == 'resnet18':
            model = ResNet(layers=18, decoder=args.decoder, output_size=train_loader.dataset.output_size,
                in_channels=in_channels, pretrained=args.pretrained)
        print("=> model created.")
        optimizer = torch.optim.SGD(model.parameters(), args.lr, \
            momentum=args.momentum, weight_decay=args.weight_decay)

        # model = torch.nn.DataParallel(model).cuda() # for multi-gpu training
        model = model.cuda()

    # define loss function (criterion) and optimizer
    if args.criterion == 'l2':
        criterion = criteria.MaskedMSELoss().cuda()
    elif args.criterion == 'l1':
        criterion = criteria.MaskedL1Loss().cuda()

    # create results folder, if not already exists
    output_directory = utils.get_output_directory(args)
    if not os.path.exists(output_directory):
        os.makedirs(output_directory)
    train_csv = os.path.join(output_directory, 'train.csv')
    test_csv = os.path.join(output_directory, 'test.csv')
    best_txt = os.path.join(output_directory, 'best.txt')

    # create new csv files with only header
    if not args.resume:
        with open(train_csv, 'w') as csvfile:
            writer = csv.DictWriter(csvfile, fieldnames=fieldnames)
            writer.writeheader()
        with open(test_csv, 'w') as csvfile:
            writer = csv.DictWriter(csvfile, fieldnames=fieldnames)
            writer.writeheader()

    for epoch in range(start_epoch, args.epochs):
        utils.adjust_learning_rate(optimizer, epoch, args.lr)
        train(train_loader, model, criterion, optimizer, epoch) # train for one epoch
        result, img_merge = validate(val_loader, model, epoch) # evaluate on validation set

        # remember best rmse and save checkpoint
        is_best = result.rmse < best_result.rmse
        if is_best:
            best_result = result
            with open(best_txt, 'w') as txtfile:
                txtfile.write("epoch={}\nmse={:.3f}\nrmse={:.3f}\nabsrel={:.3f}\nlg10={:.3f}\nmae={:.3f}\ndelta1={:.3f}\nt_gpu={:.4f}\n".
                    format(epoch, result.mse, result.rmse, result.absrel, result.lg10, result.mae, result.delta1, result.gpu_time))
            if img_merge is not None:
                img_filename = output_directory + '/comparison_best.png'
                utils.save_image(img_merge, img_filename)

        utils.save_checkpoint({
            'args': args,
            'epoch': epoch,
            'arch': args.arch,
            'model': model,
            'best_result': best_result,
            'optimizer' : optimizer,
        }, is_best, epoch, output_directory)


def train(train_loader, model, criterion, optimizer, epoch):
    average_meter = AverageMeter()
    model.train() # switch to train mode
    end = time.time()
    for i, (input, target) in enumerate(train_loader):

        input, target = input.cuda(), target.cuda()
        torch.cuda.synchronize()
        data_time = time.time() - end

        # compute pred
        end = time.time()
        pred = model(input)
        loss = criterion(pred, target)
        optimizer.zero_grad()
        loss.backward() # compute gradient and do SGD step
        optimizer.step()
        torch.cuda.synchronize()
        gpu_time = time.time() - end

        # measure accuracy and record loss
        result = Result()
        result.evaluate(pred.data, target.data)
        average_meter.update(result, gpu_time, data_time, input.size(0))
        end = time.time()

        if (i + 1) % args.print_freq == 0:
            print('=> output: {}'.format(output_directory))
            print('Train Epoch: {0} [{1}/{2}]\t'
                  't_Data={data_time:.3f}({average.data_time:.3f}) '
                  't_GPU={gpu_time:.3f}({average.gpu_time:.3f})\n\t'
                  'RMSE={result.rmse:.2f}({average.rmse:.2f}) '
                  'MAE={result.mae:.2f}({average.mae:.2f}) '
                  'Delta1={result.delta1:.3f}({average.delta1:.3f}) '
                  'REL={result.absrel:.3f}({average.absrel:.3f}) '
                  'Lg10={result.lg10:.3f}({average.lg10:.3f}) '.format(
                  epoch, i+1, len(train_loader), data_time=data_time,
                  gpu_time=gpu_time, result=result, average=average_meter.average()))

    avg = average_meter.average()
    with open(train_csv, 'a') as csvfile:
        writer = csv.DictWriter(csvfile, fieldnames=fieldnames)
        writer.writerow({'mse': avg.mse, 'rmse': avg.rmse, 'absrel': avg.absrel, 'lg10': avg.lg10,
            'mae': avg.mae, 'delta1': avg.delta1, 'delta2': avg.delta2, 'delta3': avg.delta3,
            'gpu_time': avg.gpu_time, 'data_time': avg.data_time})


def validate(val_loader, model, epoch, write_to_file=True):
    average_meter = AverageMeter()
    model.eval() # switch to evaluate mode
    end = time.time()
    for i, (input, target) in enumerate(val_loader):
        input, target = input.cuda(), target.cuda()
        torch.cuda.synchronize()
        data_time = time.time() - end

        # compute output
        end = time.time()
        with torch.no_grad():
            pred = model(input)
        torch.cuda.synchronize()
        gpu_time = time.time() - end

        # measure accuracy and record loss
        result = Result()
        result.evaluate(pred.data, target.data)
        average_meter.update(result, gpu_time, data_time, input.size(0))
        end = time.time()

        # save 8 images for visualization
        skip = 50
        if args.modality == 'd':
            img_merge = None
        else:
            if args.modality == 'rgb':
                rgb = input
            elif args.modality == 'rgbd':
                rgb = input[:,:3,:,:]
                depth = input[:,3:,:,:]

            if i == 0:
                if args.modality == 'rgbd':
                    img_merge = utils.merge_into_row_with_gt(rgb, depth, target, pred)
                else:
                    img_merge = utils.merge_into_row(rgb, target, pred)
            elif (i < 8*skip) and (i % skip == 0):
                if args.modality == 'rgbd':
                    row = utils.merge_into_row_with_gt(rgb, depth, target, pred)
                else:
                    row = utils.merge_into_row(rgb, target, pred)
                img_merge = utils.add_row(img_merge, row)
            elif i == 8*skip:
                filename = output_directory + '/comparison_' + str(epoch) + '.png'
                utils.save_image(img_merge, filename)

        if (i+1) % args.print_freq == 0:
            print('Test: [{0}/{1}]\t'
                  't_GPU={gpu_time:.3f}({average.gpu_time:.3f})\n\t'
                  'RMSE={result.rmse:.2f}({average.rmse:.2f}) '
                  'MAE={result.mae:.2f}({average.mae:.2f}) '
                  'Delta1={result.delta1:.3f}({average.delta1:.3f}) '
                  'REL={result.absrel:.3f}({average.absrel:.3f}) '
                  'Lg10={result.lg10:.3f}({average.lg10:.3f}) '.format(
                   i+1, len(val_loader), gpu_time=gpu_time, result=result, average=average_meter.average()))

    avg = average_meter.average()

    print('\n*\n'
        'RMSE={average.rmse:.3f}\n'
        'MAE={average.mae:.3f}\n'
        'Delta1={average.delta1:.3f}\n'
        'REL={average.absrel:.3f}\n'
        'Lg10={average.lg10:.3f}\n'
        't_GPU={time:.3f}\n'.format(
        average=avg, time=avg.gpu_time))

    if write_to_file:
        with open(test_csv, 'a') as csvfile:
            writer = csv.DictWriter(csvfile, fieldnames=fieldnames)
            writer.writerow({'mse': avg.mse, 'rmse': avg.rmse, 'absrel': avg.absrel, 'lg10': avg.lg10,
                'mae': avg.mae, 'delta1': avg.delta1, 'delta2': avg.delta2, 'delta3': avg.delta3,
                'data_time': avg.data_time, 'gpu_time': avg.gpu_time})
    return avg, img_merge


def test(test_loader, model, save_path):
    average_meter = AverageMeter()
    model.eval() # switch to evaluate mode
    for i, (input, target) in enumerate(test_loader):
        input, name = input.cuda(), target
        torch.cuda.synchronize()

        # compute output
        end = time.time()
        with torch.no_grad():
            pred = model(input)

        torch.cuda.synchronize()
        pred1 = utils.strentch_img(pred)
        save_to_file = os.path.join(save_path, name[0] + '.png')
        utils.save_image(pred1, save_to_file)

        save_to_tif = os.path.join(save_path, name[0] + '_ori.tiff')
        depth_pred_cpu = np.squeeze(pred.data.cpu().numpy())
        img = Image.fromarray(depth_pred_cpu)
        img = img.resize((1280, 720))
        img.save(save_to_tif)


if __name__ == '__main__':
    main()

        (4)测试

        改好上面后,创建test文件夹,放入数据

深度补偿模型sparse-to-dense测试_第5张图片

深度补偿模型sparse-to-dense测试_第6张图片

 接着命令行输入下面的命令

python main.py --test model_best.pth

白色的图是结果,彩色图是白色图可视化后的结果 ,存放位置在mian.py的第90行改(test_save_path = './results/')

深度补偿模型sparse-to-dense测试_第7张图片

你可能感兴趣的:(语义分割,深度学习,人工智能)