- spring-boot 整合 shardingsphere-jdbc、mybatis-plus 数据分片(文末有彩蛋)
ゞ註﹎錠oo
架构之路mybatisspringbootspring数据库
1.什么是ShardingSphere?ApacheShardingSphere是一款分布式的数据库生态系统,可以将任意数据库转换为分布式数据库,并通过数据分片、弹性伸缩、加密等能力对原有数据库进行增强。ApacheShardingSphere设计哲学为DatabasePlus,旨在构建异构数据库上层的标准和生态。它关注如何充分合理地利用数据库的计算和存储能力,而并非实现一个全新的数据库。它站在数
- ShardingSphere 功能详细介绍
冰糖心158
数据库
ShardingSphere是一个开源的分布式数据库中间件,旨在为数据库提供高可扩展性、可管理性和高可用性,支持数据的分库分表(Sharding)、数据库路由、数据同步等功能。ShardingSphere本质上是一个分布式数据库代理,它提供透明的分布式数据操作,使得应用程序可以像操作单一数据库一样操作分布式数据。ShardingSphere具有以下几个主要功能:1.分库分表(Sharding)Sh
- Web3.0开发路线
king-agic
前沿技术web3
Web3.0开发是一个不断演进的领域,涉及到区块链技术、去中心化应用(DApps)、智能合约等多个方面。阶段一:Web3基础知识与区块链原理目标:理解Web3与区块链的基本概念、发展历程与价值主张。掌握区块链的核心原理,包括分布式账本、共识机制、加密算法、智能合约等。学习内容:Web3概述:起源、愿景、与Web2的区别。区块链基础:区块、链式结构、哈希、公钥/私钥、UTXO模型、账户模型等。共识机
- 【机器学习实战中阶】音乐流派分类-自动化分类不同音乐风格
精通代码大仙
数据挖掘深度学习python机器学习分类自动化人工智能数据挖掘深度学习
音乐流派分类–自动化分类不同音乐风格在本教程中,我们将开发一个深度学习项目,用于自动化地从音频文件中分类不同的音乐流派。我们将使用音频文件的频率域和时间域低级特征来分类这些音频文件。对于这个项目,我们需要一个具有相似大小和相似频率范围的音频曲目数据集。GTZAN流派分类数据集是音乐流派分类项目中最推荐的数据集,并且它是为了这个任务而收集的。音乐流派分类器模型音乐流派分类关于数据集:GTZAN流派收
- AI歌手会成为主流吗?
网络安全我来了
IT技术人工智能
AI歌手会成为主流吗?在如今这个科技迅猛发展的时代,AI歌手渐渐走入我们的视野。或许你会想,AI真的能够唱歌,它的歌声能与真实歌手相媲美吗?让我们一起探索这个引人入胜的主题,看看AI歌手的发展现状、优缺点,以及它在音乐行业的未来前景。1.AI歌手的发展现状1.1技术背景我们处于一个机器学习和深度学习技术飞速发展的时代,AI歌手的诞生并非偶然。通过收集和分析大量的音乐数据,AI能够学习并模仿特定歌手
- 数据增强方法及其工具
cxr828
大数据
数据增强(DataAugmentation)是指在训练深度学习模型时,通过对现有数据进行一系列变换,从而生成新的样本。数据增强有助于增加数据的多样性,减少过拟合,提升模型的泛化能力,尤其是在数据量有限的情况下。数据增强可以应用于图像、文本、音频等多种类型的数据。以下是一些常见的、简单易行的图像数据增强方法及其具体实现步骤,这些方法也可以广泛应用于目标检测、图像分类、图像分割等任务。一、图像数据增强
- Kafka面试夺命连环30问(一)
知否&知否
kafka面试分布式
1、kafka消息发送的流程?Producer创建并配置。发送消息,消息被序列化,并通过配置的分区规则决定发送的分区。Producer发送请求,通过网络将消息发送到相应的Broker。Broker存储消息,将消息写入分区日志。Producer等待ACK确认,根据acks配置等待响应。成功或失败,根据结果执行回调,消息成功则继续发送,失败则重试。2、Kafka的设计架构你知道吗?Kafka的设计架构
- 基于深度学习CNN网络 mini-xception网络实现 构建一个完整的人脸表情检测_识别分类系统,包括训练、评估、前端和服务端代码
计算机c9硕士算法工程师
卷积神经网络深度学习cnn分类
人脸表情检测该项目已训练好网络模型,配置好环境即可运行使用,效果见图像,实现图像识别、摄像头识别、摄像头识别/识别分类项目-说明文档-UI界面-cnn网络项目基本介绍:【网络】深度学习CNN网络mini-xception网络【环境】python>=3.5tensorflow2opencvpyqt5【文件】训练预测全部源代码、训练好的模型、fer2013数据集、程序算法讲解文档【类别】对7种表情检测
- AI技术架构:从基础设施到应用
fuqinyijiu
AI人工智能架构
人工智能(AI)的发展,正以前所未有的速度重塑我们的世界。了解AI技术架构,不仅能帮助我们看懂AI的底层逻辑,还能掌握其对各行业变革的潜力与方向。一、基础设施层:AI技术的坚实地基基础设施层是AI技术架构的“地基”,为整个系统提供计算能力和存储保障。没有强大的基础设施,复杂的AI模型和应用无法落地。1.GPU(图形处理单元):并行计算的核心GPU是深度学习的核心引擎,专为大规模并行计算设计。技术优
- 分布式锁的实现,基于Redis实现分布式锁
轻浮j
Redis分布式redis数据库
分布式锁的实现,基于Redis实现分布式锁前言基于mysql实现分布式锁基于Reids实现分布式锁基于Redis的具体实现问题1:线程误删锁解决方案一:在删除锁时进行校验问题2:释放锁的检验和释放不具有原子性解决方案:基于lua脚本使检验和删除操作具有原子性其他问题前言对于一些业务来说,比如商品或者优惠卷的抢杀,我们常常需要进行一些加锁的操作比如synchronized等来避免商品的超卖问题,但是
- 简历_使用优化的Redis自增ID策略生成分布式环境下全局唯一ID,用于用户上传数据的命名以及多种ID的生成
醒了就刷牙
面试分布式面试
系列博客目录文章目录系列博客目录WhyRedis自增ID策略Why我们需要设置全局唯一ID。原因:当用户抢购时,就会生成订单并保存到tb_voucher_order这张表中,而订单表如果使用数据库自增ID就存在一些问题。问题:id的规律性太明显、受单表数据量的限制。所以在自己的项目中,针对上传的数据的ID的生成也可以使用全局唯一ID。表中有ID,属性类型(文本、音频、图像)以及存储位置,文件名(文
- Java 大视界 -- Java 大数据分布式缓存:提升数据访问性能(五)
青云交
大数据新视界Java大视界大数据分布式缓存数据访问性能RedisMemcached缓存一致性缓存击穿java
亲爱的朋友们,热烈欢迎你们来到青云交的博客!能与你们在此邂逅,我满心欢喜,深感无比荣幸。在这个瞬息万变的时代,我们每个人都在苦苦追寻一处能让心灵安然栖息的港湾。而我的博客,正是这样一个温暖美好的所在。在这里,你们不仅能够收获既富有趣味又极为实用的内容知识,还可以毫无拘束地畅所欲言,尽情分享自己独特的见解。我真诚地期待着你们的到来,愿我们能在这片小小的天地里共同成长,共同进步。本博客的精华专栏:大数
- LVDS高速背板总线:打造分布式I/O高效数据传输新境界
明达技术
分布式LVDS自动化物联网
在当今的工业自动化控制系统中,数据传输的速度和可靠性成为了决定系统性能的关键因素。MR30分布式I/O模块通过搭配LVDS(Low-VoltageDifferentialSignaling,低压差分信号)高速背板总线,是满足这一需求的完美解决方案。本文将为您详细介绍这一组合如何以15M的总线带宽,引领工业自动化领域的数据传输新潮流。MR30分布式I/O模块,作为工业自动化控制系统中的核心设备,主要
- 解析一体式IO与分布式IO:从架构到应用
明达技术
分布式架构
在工业自动化领域,IO(输入/输出)系统扮演着举足轻重的角色。它们不仅负责数据的采集和控制指令的发送,还直接影响到系统的灵活性、可靠性和成本效益。明达技术将为您介绍一体式IO和分布式IO在架构及应用层的主要区别,帮助您更好地理解这两种技术。一体式IO:集中控制的代表一体式IO,也称为集中式IO,其核心理念是将所有的IO模块集中安装在中央控制单元附近。在这种架构中,传感器和执行器通过电缆直接连接到中
- Spring boot 集成分布式定时任务
沉默,王二
springboot分布式后端
Springboot集成分布式定时任务定义及作用在分布式定时任务中,需要一种机制来确保同一任务在不同的服务实例中不会同时执行,这就是分布式定时任务锁的作用。集成引入相关依赖net.javacrumbs.shedlockshedlock-spring4.30.0net.javacrumbs.shedlockshedlock-provider-redis-spring4.30.0编写配置类packag
- 浅谈安科瑞电能质量监测和治理产品在分布式光伏电站的应用-安科瑞 蒋静
安科瑞蒋静
分布式
1概述随着对可再生能源需求的增加,分布式光伏电站的建设和发展迅速。然而,分布式光伏电站的运行过程中面临着一系列问题,比如导致企业关口计量点功率因数过低、谐波污染等。这些问题不仅影响光伏电站自身的运行效率,还会对企业内部电网的稳定性和电费成本造成负面影响。为此,安科瑞公司推出了一系列电能质量治理产品,针对分布式光伏电站引起的企业关口功率因数过低、谐波污染等问题提供解决方案。2分布式光伏电站导致的电能
- 从点云中剔除遮挡点
AuSwift
点云
在三维计算机视觉和点云处理中,点云是由大量的三维点组成的数据集。然而,有时候点云中的某些点可能会被其他物体所遮挡,这可能会对进一步的分析和处理造成困扰。本文将介绍如何使用MATLAB从点云中移除这些遮挡点。在开始之前,请确保你已经安装了MATLAB和PointCloudProcessingToolbox。接下来,我们将按照以下步骤进行操作。步骤1:加载点云数据首先,我们需要加载点云数据。假设我们的
- [图数据库]HugeGraph 1.5.0 版本发布了
码农丁丁
#图数据库#数据库数据库图数据库HugeGraph
运行环境/版本说明1.5.0版开始,hugegraph相关组件仅支持Java11编译/运行环境PS:未来HugeGraph组件的版本会朝着Java11->Java17->Java21演进hugegraph本版本新增了大量功能并进行了多项优化,尤其是针对自控分布式版本新后端HStore(Raft+RocksDB)的实现支持,欢迎试用反馈APIChangesBREAKINGCHANGE:Support
- 【深度学习】AMP(Automatic Mixed Precision,自动混合精度)
shanks66
深度学习人工智能
@[toc]AMP(AutomaticMixedPrecision,自动混合精度)AMP在深度学习中,AMP(AutomaticMixedPrecision,自动混合精度)是一种通过混合使用单精度(FP32)和半精度(FP16)来加速训练并减少显存占用的技术。它能够在不显著损失模型精度的情况下,大幅提升训练速度和效率。1.什么是混合精度训练?混合精度训练是指在训练过程中同时使用两种不同的浮点数精度
- docker部署ELK日志系统+kafka
weixin_50837690
dockerkafkaelkelasticsearch
docker部署ELK日志系统+kafka1.部署elasticsearch#拉取镜像dockerpullelasticsearch:7.6.2#创建文件夹mkdir-p/data/elk/es/config#创建elasticsearch.yml文件vi/data/elk/es/config/elasticsearch.yml------------------------写入---------
- 智能化植物病害检测:使用深度学习与图像识别技术的应用
机器懒得学习
深度学习人工智能
植物病害一直是农业生产中亟待解决的问题,它不仅会影响作物的产量和质量,还可能威胁到生态环境的稳定。随着人工智能(AI)技术的快速发展,尤其是深度学习和图像识别技术的应用,智能化植物病害检测已经成为一种趋势,能够大幅提高病害检测的效率与准确性。本文将介绍如何使用深度学习和图像识别技术,通过Python编写的智能化病害检测程序,实现对植物叶片病害的自动识别与分类。1.项目背景与目标在农业领域,及时发现
- 深度学习-45-大型语言模型LLM之本地化部署运行自己的大模型
皮皮冰燃
深度学习深度学习人工智能
文章目录1深度学习1.1神经网络和深度学习1.2神经网络的工作原理1.3神经网络的专业术语2LLM概述2.1大模型的"大"是指什么?2.2训练大模型有多烧钱?2.3如何入门大模型?2.4LLM的结构2.4.1Transformer2.4.2Prompts2.4.3FineTuning3本地跑大模型3.1Ollama运行开源LLM3.1.1启动并运行3.1.2使用api访问3.1.3设置外网访问3.
- 【cs.CV】25.1.14 arxiv更新速递
hinmer
CV每日更新arxivchatgptgpt人工智能自然语言处理自动驾驶计算机视觉ai
【cs.CV】25.1.14arxiv更新110篇—第1篇----=====Omni-RGPT:UnifyingImageandVideoRegion-levelUnderstandingviaTokenMarks关键词:计算机视觉,多模态大语言模型,区域级理解,TokenMark,视频理解链接1摘要:我们提出了Omni-RGPT,这是一种多模态大型语言模型,旨在促进图像和视频的区域级理解。为了在
- 深度学习笔记——前向传播与反向传播、神经网络(前馈神经网络与反馈神经网络)、常见算法概要汇总
好评笔记
深度学习笔记深度学习笔记神经网络人工智能
大家好,这里是好评笔记,公主号:Goodnote,专栏文章私信限时Free。本文简要介绍深度学习的前向传播与反向传播,以及前馈神经网络与反馈神经网络。文章目录前向传播与反向传播前向传播(ForwardPropagation)反向传播(BackPropagation)总结神经网络简介结构类型前馈神经网络(FeedforwardNeuralNetwork,FFNN)特点常见变体反馈神经网络(Feedb
- 深度学习笔记——生成对抗网络GAN
好评笔记
深度学习笔记深度学习生成对抗网络人工智能神经网络aigcgan机器学习
大家好,这里是好评笔记,公主号:Goodnote,专栏文章私信限时Free。本文详细介绍早期生成式AI的代表性模型:生成对抗网络GAN。文章目录一、基本结构生成器判别器二、损失函数判别器生成器交替优化目标函数三、GAN的训练过程训练流程概述训练流程步骤1.初始化参数和超参数2.定义损失函数3.训练过程的迭代判别器训练步骤生成器训练步骤4.交替优化5.收敛判别GAN训练过程的挑战四、GAN的常见变体
- python基于redis实现分布式锁
2401_89224765
pythonredis分布式
上图可以看到,变量A存在三个服务器内存中(这个变量A主要体现是在一个类中的一个成员变量,是一个有状态的对象),如果不加任何控制的话,变量A同时都会在分配一块内存,三个请求发过来同时对这个变量操作,显然结果是不对的!即使不是同时发过来,三个请求分别操作三个不同内存区域的数据,变量A之间不存在共享,也不具有可见性,处理的结果也是不对的!如果我们业务中确实存在这个场景的话,我们就需要一种方法解决这个问题
- 基于docker微服务日志ELK+Kafka搭建
我是奶龙!我是奶龙!我是奶龙!
docker微服务elkspringcloudspringbootkafka
ELK是Elasticsearch、Logstash、Kibana的简称Elasticsearch是实时全文搜索和分析引擎,提供搜集、分析、存储数据三大功能;是一套开放REST和JAVAAPI等结构提供高效搜索功能,可扩展的分布式系统。它构建于ApacheLucene搜索引擎库之上。Logstash是一个用来搜集、分析、过滤日志的工具。它支持几乎任何类型的日志,包括系统日志、错误日志和自定义应用程
- 学英语学压测: jmeter分布式测试
学会了没
jmeter压测jmeter集群同一子网防火墙
Thisshorttutorialexplainshowtousemultiplesystemstoperformstresstesting.Beforewestart,thereareacoupleofthingstocheck.thefirewallsonthesystemsareturnedofforcorrectportsareopened.alltheclientsareonthesam
- 鸿蒙和安卓、ios的对比
惺星
harmonyosandroidios
鸿蒙系统、安卓系统、iOS系统各有特点。总体来说,鸿蒙系统在流畅性、分布式能力和可扩展性方面表现出色,安卓系统在开放性和可定制性方面具有优势,而iOS系统在稳定性和易用性方面占优。流畅性:鸿蒙系统在流畅性方面表现优秀。由于其基于微内核设计,且对硬件资源进行深度优化,使得设备在运行鸿蒙系统时更为流畅。相比之下,安卓系统的流畅性表现稍逊色,主要是由于安卓系统的碎片化问题导致设备之间的性能差异较大。而i
- 分布式Server:IDL_ssgrade
XLYcmy
分布式分布式c++网络安全CWindows课程设计操作系统
源程序:【免费】分布式Server:IDL-ssgrade资源-CSDN文库//Don'tmodifythisfileasitwillbeoverwritten.//#include"IDL_ssgrade.h"Grade::Grade(constGrade&IDL_s){name=IDL_s.name;ID=IDL_s.ID;score=IDL_s.score;}Grade&Grade::ope
- HQL之投影查询
归来朝歌
HQLHibernate查询语句投影查询
在HQL查询中,常常面临这样一个场景,对于多表查询,是要将一个表的对象查出来还是要只需要每个表中的几个字段,最后放在一起显示?
针对上面的场景,如果需要将一个对象查出来:
HQL语句写“from 对象”即可
Session session = HibernateUtil.openSession();
- Spring整合redis
bylijinnan
redis
pom.xml
<dependencies>
<!-- Spring Data - Redis Library -->
<dependency>
<groupId>org.springframework.data</groupId>
<artifactId>spring-data-redi
- org.hibernate.NonUniqueResultException: query did not return a unique result: 2
0624chenhong
Hibernate
参考:http://blog.csdn.net/qingfeilee/article/details/7052736
org.hibernate.NonUniqueResultException: query did not return a unique result: 2
在项目中出现了org.hiber
- android动画效果
不懂事的小屁孩
android动画
前几天弄alertdialog和popupwindow的时候,用到了android的动画效果,今天专门研究了一下关于android的动画效果,列出来,方便以后使用。
Android 平台提供了两类动画。 一类是Tween动画,就是对场景里的对象不断的进行图像变化来产生动画效果(旋转、平移、放缩和渐变)。
第二类就是 Frame动画,即顺序的播放事先做好的图像,与gif图片原理类似。
- js delete 删除机理以及它的内存泄露问题的解决方案
换个号韩国红果果
JavaScript
delete删除属性时只是解除了属性与对象的绑定,故当属性值为一个对象时,删除时会造成内存泄露 (其实还未删除)
举例:
var person={name:{firstname:'bob'}}
var p=person.name
delete person.name
p.firstname -->'bob'
// 依然可以访问p.firstname,存在内存泄露
- Oracle将零干预分析加入网络即服务计划
蓝儿唯美
oracle
由Oracle通信技术部门主导的演示项目并没有在本月较早前法国南斯举行的行业集团TM论坛大会中获得嘉奖。但是,Oracle通信官员解雇致力于打造一个支持零干预分配和编制功能的网络即服务(NaaS)平台,帮助企业以更灵活和更适合云的方式实现通信服务提供商(CSP)的连接产品。这个Oracle主导的项目属于TM Forum Live!活动上展示的Catalyst计划的19个项目之一。Catalyst计
- spring学习——springmvc(二)
a-john
springMVC
Spring MVC提供了非常方便的文件上传功能。
1,配置Spring支持文件上传:
DispatcherServlet本身并不知道如何处理multipart的表单数据,需要一个multipart解析器把POST请求的multipart数据中抽取出来,这样DispatcherServlet就能将其传递给我们的控制器了。为了在Spring中注册multipart解析器,需要声明一个实现了Mul
- POJ-2828-Buy Tickets
aijuans
ACM_POJ
POJ-2828-Buy Tickets
http://poj.org/problem?id=2828
线段树,逆序插入
#include<iostream>#include<cstdio>#include<cstring>#include<cstdlib>using namespace std;#define N 200010struct
- Java Ant build.xml详解
asia007
build.xml
1,什么是antant是构建工具2,什么是构建概念到处可查到,形象来说,你要把代码从某个地方拿来,编译,再拷贝到某个地方去等等操作,当然不仅与此,但是主要用来干这个3,ant的好处跨平台 --因为ant是使用java实现的,所以它跨平台使用简单--与ant的兄弟make比起来语法清晰--同样是和make相比功能强大--ant能做的事情很多,可能你用了很久,你仍然不知道它能有
- android按钮监听器的四种技术
百合不是茶
androidxml配置监听器实现接口
android开发中经常会用到各种各样的监听器,android监听器的写法与java又有不同的地方;
1,activity中使用内部类实现接口 ,创建内部类实例 使用add方法 与java类似
创建监听器的实例
myLis lis = new myLis();
使用add方法给按钮添加监听器
- 软件架构师不等同于资深程序员
bijian1013
程序员架构师架构设计
本文的作者Armel Nene是ETAPIX Global公司的首席架构师,他居住在伦敦,他参与过的开源项目包括 Apache Lucene,,Apache Nutch, Liferay 和 Pentaho等。
如今很多的公司
- TeamForge Wiki Syntax & CollabNet User Information Center
sunjing
TeamForgeHow doAttachementAnchorWiki Syntax
the CollabNet user information center http://help.collab.net/
How do I create a new Wiki page?
A CollabNet TeamForge project can have any number of Wiki pages. All Wiki pages are linked, and
- 【Redis四】Redis数据类型
bit1129
redis
概述
Redis是一个高性能的数据结构服务器,称之为数据结构服务器的原因是,它提供了丰富的数据类型以满足不同的应用场景,本文对Redis的数据类型以及对这些类型可能的操作进行总结。
Redis常用的数据类型包括string、set、list、hash以及sorted set.Redis本身是K/V系统,这里的数据类型指的是value的类型,而不是key的类型,key的类型只有一种即string
- SSH2整合-附源码
白糖_
eclipsespringtomcatHibernateGoogle
今天用eclipse终于整合出了struts2+hibernate+spring框架。
我创建的是tomcat项目,需要有tomcat插件。导入项目以后,鼠标右键选择属性,然后再找到“tomcat”项,勾选一下“Is a tomcat project”即可。具体方法见源码里的jsp图片,sql也在源码里。
补充1:项目中部分jar包不是最新版的,可能导
- [转]开源项目代码的学习方法
braveCS
学习方法
转自:
http://blog.sina.com.cn/s/blog_693458530100lk5m.html
http://www.cnblogs.com/west-link/archive/2011/06/07/2074466.html
1)阅读features。以此来搞清楚该项目有哪些特性2)思考。想想如果自己来做有这些features的项目该如何构架3)下载并安装d
- 编程之美-子数组的最大和(二维)
bylijinnan
编程之美
package beautyOfCoding;
import java.util.Arrays;
import java.util.Random;
public class MaxSubArraySum2 {
/**
* 编程之美 子数组之和的最大值(二维)
*/
private static final int ROW = 5;
private stat
- 读书笔记-3
chengxuyuancsdn
jquery笔记resultMap配置ibatis一对多配置
1、resultMap配置
2、ibatis一对多配置
3、jquery笔记
1、resultMap配置
当<select resultMap="topic_data">
<resultMap id="topic_data">必须一一对应。
(1)<resultMap class="tblTopic&q
- [物理与天文]物理学新进展
comsci
如果我们必须获得某种地球上没有的矿石,才能够进行某些能量输出装置的设计和建造,而要获得这种矿石,又必须首先进行深空探测,而要进行深空探测,又必须获得这种能量输出装置,这个矛盾的循环,会导致地球联盟在与宇宙文明建立关系的时候,陷入困境
怎么办呢?
 
- Oracle 11g新特性:Automatic Diagnostic Repository
daizj
oracleADR
Oracle Database 11g的FDI(Fault Diagnosability Infrastructure)是自动化诊断方面的又一增强。
FDI的一个关键组件是自动诊断库(Automatic Diagnostic Repository-ADR)。
在oracle 11g中,alert文件的信息是以xml的文件格式存在的,另外提供了普通文本格式的alert文件。
这两份log文
- 简单排序:选择排序
dieslrae
选择排序
public void selectSort(int[] array){
int select;
for(int i=0;i<array.length;i++){
select = i;
for(int k=i+1;k<array.leng
- C语言学习六指针的经典程序,互换两个数字
dcj3sjt126com
c
示例程序,swap_1和swap_2都是错误的,推理从1开始推到2,2没完成,推到3就完成了
# include <stdio.h>
void swap_1(int, int);
void swap_2(int *, int *);
void swap_3(int *, int *);
int main(void)
{
int a = 3;
int b =
- php 5.4中php-fpm 的重启、终止操作命令
dcj3sjt126com
PHP
php 5.4中php-fpm 的重启、终止操作命令:
查看php运行目录命令:which php/usr/bin/php
查看php-fpm进程数:ps aux | grep -c php-fpm
查看运行内存/usr/bin/php -i|grep mem
重启php-fpm/etc/init.d/php-fpm restart
在phpinfo()输出内容可以看到php
- 线程同步工具类
shuizhaosi888
同步工具类
同步工具类包括信号量(Semaphore)、栅栏(barrier)、闭锁(CountDownLatch)
闭锁(CountDownLatch)
public class RunMain {
public long timeTasks(int nThreads, final Runnable task) throws InterruptedException {
fin
- bleeding edge是什么意思
haojinghua
DI
不止一次,看到很多讲技术的文章里面出现过这个词语。今天终于弄懂了——通过朋友给的浏览软件,上了wiki。
我再一次感到,没有辞典能像WiKi一样,给出这样体贴人心、一清二楚的解释了。为了表达我对WiKi的喜爱,只好在此一一中英对照,给大家上次课。
In computer science, bleeding edge is a term that
- c中实现utf8和gbk的互转
jimmee
ciconvutf8&gbk编码
#include <iconv.h>
#include <stdlib.h>
#include <stdio.h>
#include <unistd.h>
#include <fcntl.h>
#include <string.h>
#include <sys/stat.h>
int code_c
- 大型分布式网站架构设计与实践
lilin530
应用服务器搜索引擎
1.大型网站软件系统的特点?
a.高并发,大流量。
b.高可用。
c.海量数据。
d.用户分布广泛,网络情况复杂。
e.安全环境恶劣。
f.需求快速变更,发布频繁。
g.渐进式发展。
2.大型网站架构演化发展历程?
a.初始阶段的网站架构。
应用程序,数据库,文件等所有的资源都在一台服务器上。
b.应用服务器和数据服务器分离。
c.使用缓存改善网站性能。
d.使用应用
- 在代码中获取Android theme中的attr属性值
OliveExcel
androidtheme
Android的Theme是由各种attr组合而成, 每个attr对应了这个属性的一个引用, 这个引用又可以是各种东西.
在某些情况下, 我们需要获取非自定义的主题下某个属性的内容 (比如拿到系统默认的配色colorAccent), 操作方式举例一则:
int defaultColor = 0xFF000000;
int[] attrsArray = { andorid.r.
- 基于Zookeeper的分布式共享锁
roadrunners
zookeeper分布式共享锁
首先,说说我们的场景,订单服务是做成集群的,当两个以上结点同时收到一个相同订单的创建指令,这时并发就产生了,系统就会重复创建订单。等等......场景。这时,分布式共享锁就闪亮登场了。
共享锁在同一个进程中是很容易实现的,但在跨进程或者在不同Server之间就不好实现了。Zookeeper就很容易实现。具体的实现原理官网和其它网站也有翻译,这里就不在赘述了。
官
- 两个容易被忽略的MySQL知识
tomcat_oracle
mysql
1、varchar(5)可以存储多少个汉字,多少个字母数字? 相信有好多人应该跟我一样,对这个已经很熟悉了,根据经验我们能很快的做出决定,比如说用varchar(200)去存储url等等,但是,即使你用了很多次也很熟悉了,也有可能对上面的问题做出错误的回答。 这个问题我查了好多资料,有的人说是可以存储5个字符,2.5个汉字(每个汉字占用两个字节的话),有的人说这个要区分版本,5.0
- zoj 3827 Information Entropy(水题)
阿尔萨斯
format
题目链接:zoj 3827 Information Entropy
题目大意:三种底,计算和。
解题思路:调用库函数就可以直接算了,不过要注意Pi = 0的时候,不过它题目里居然也讲了。。。limp→0+plogb(p)=0,因为p是logp的高阶。
#include <cstdio>
#include <cstring>
#include <cmath&