如何进行对抗训练:
https://blog.csdn.net/weixin_42001089/article/details/115458615
FGSM
class FGM(object):
def __init__(self, model, emb_name, epsilon=1.0):
# emb_name这个参数要换成你模型中embedding的参数名
self.model = model
self.epsilon = epsilon
self.emb_name = emb_name
self.backup = {}
def attack(self):
for name, param in self.model.named_parameters():
if param.requires_grad and self.emb_name in name:
self.backup[name] = param.data.clone()
norm = torch.norm(param.grad)
if norm != 0 and not torch.isnan(norm):
r_at = self.epsilon * param.grad / norm
param.data.add_(r_at)
def restore(self):
for name, param in self.model.named_parameters():
if param.requires_grad and self.emb_name in name:
assert name in self.backup
param.data = self.backup[name]
self.backup = {}
训练
fgm = FGM(model,epsilon=1,emb_name='word_embeddings.')
for batch_input, batch_label in processor:
# 正常训练
loss = model(batch_input, batch_label)
loss.backward() # 反向传播,得到正常的grad
# 对抗训练
fgm.attack() # 在embedding上添加对抗扰动
loss_adv = model(batch_input, batch_label)#这部分一定要注意model该传入的参数
loss_adv.backward() # 反向传播,并在正常的grad基础上,累加对抗训练的梯度
fgm.restore() # 恢复embedding参数
# 梯度下降,更新参数
optimizer.step()
model.zero_grad()
相当于多步FGSM
class PGD(object):
def __init__(self, model, emb_name, epsilon=1., alpha=0.3):
# emb_name这个参数要换成你模型中embedding的参数名
self.model = model
self.emb_name = emb_name
self.epsilon = epsilon
self.alpha = alpha
self.emb_backup = {}
self.grad_backup = {}
def attack(self, is_first_attack=False):
for name, param in self.model.named_parameters():
if param.requires_grad and self.emb_name in name:
if is_first_attack:
self.emb_backup[name] = param.data.clone()
norm = torch.norm(param.grad)
if norm != 0:
r_at = self.alpha * param.grad / norm
param.data.add_(r_at)
param.data = self.project(name, param.data, self.epsilon)
def restore(self):
for name, param in self.model.named_parameters():
if param.requires_grad and self.emb_name in name:
assert name in self.emb_backup
param.data = self.emb_backup[name]
self.emb_backup = {}
def project(self, param_name, param_data, epsilon):
r = param_data - self.emb_backup[param_name]
if torch.norm(r) > epsilon:
r = epsilon * r / torch.norm(r)
return self.emb_backup[param_name] + r
def backup_grad(self):
for name, param in self.model.named_parameters():
if param.requires_grad and param.grad is not None:
self.grad_backup[name] = param.grad.clone()
def restore_grad(self):
for name, param in self.model.named_parameters():
if param.requires_grad and param.grad is not None:
param.grad = self.grad_backup[name]
训练
pgd = PGD(model,emb_name='word_embeddings.',epsilon=1.0,alpha=0.3)
K = 3
for batch_input, batch_label in processor:
# 正常训练
loss = model(batch_input, batch_label)
loss.backward() # 反向传播,得到正常的grad
pgd.backup_grad()
# 对抗训练
for t in range(K):
pgd.attack(is_first_attack=(t==0)) # 在embedding上添加对抗扰动, first attack时备份param.processor
if t != K-1:
model.zero_grad()
else:
pgd.restore_grad()
loss_adv = model(batch_input, batch_label)
loss_adv.backward() # 反向传播,并在正常的grad基础上,累加对抗训练的梯度
pgd.restore() # 恢复embedding参数
# 梯度下降,更新参数
optimizer.step()
model.zero_grad()
class FreeLB(object):
def __init__(self, adv_K, adv_lr, adv_init_mag, adv_max_norm=0., adv_norm_type='l2', base_model='bert'):
self.adv_K = adv_K
self.adv_lr = adv_lr
self.adv_max_norm = adv_max_norm
self.adv_init_mag = adv_init_mag
self.adv_norm_type = adv_norm_type
self.base_model = base_model
def attack(self, model, inputs, gradient_accumulation_steps=1):
input_ids = inputs['input_ids']
if isinstance(model, torch.nn.DataParallel):
embeds_init = getattr(model.module, self.base_model).embeddings.word_embeddings(input_ids)
else:
embeds_init = getattr(model, self.base_model).embeddings.word_embeddings(input_ids)
if self.adv_init_mag > 0:
input_mask = inputs['attention_mask'].to(embeds_init)
input_lengths = torch.sum(input_mask, 1)
if self.adv_norm_type == "l2":
delta = torch.zeros_like(embeds_init).uniform_(-1, 1) * input_mask.unsqueeze(2)
dims = input_lengths * embeds_init.size(-1)
mag = self.adv_init_mag / torch.sqrt(dims)
delta = (delta * mag.view(-1, 1, 1)).detach()
elif self.adv_norm_type == "linf":
delta = torch.zeros_like(embeds_init).uniform_(-self.adv_init_mag, self.adv_init_mag)
delta = delta * input_mask.unsqueeze(2)
else:
delta = torch.zeros_like(embeds_init)
for astep in range(self.adv_K):
delta.requires_grad_()
inputs['inputs_embeds'] = delta + embeds_init
inputs['input_ids'] = None
outputs = model(**inputs)
loss, logits = outputs[:2] # model outputs are always tuple in transformers (see doc)
loss = loss.mean() # mean() to average on multi-gpu parallel training
loss = loss / gradient_accumulation_steps
loss.backward()
delta_grad = delta.grad.clone().detach()
if self.adv_norm_type == "l2":
denorm = torch.norm(delta_grad.view(delta_grad.size(0), -1), dim=1).view(-1, 1, 1)
denorm = torch.clamp(denorm, min=1e-8)
delta = (delta + self.adv_lr * delta_grad / denorm).detach()
if self.adv_max_norm > 0:
delta_norm = torch.norm(delta.view(delta.size(0), -1).float(), p=2, dim=1).detach()
exceed_mask = (delta_norm > self.adv_max_norm).to(embeds_init)
reweights = (self.adv_max_norm / delta_norm * exceed_mask + (1 - exceed_mask)).view(-1, 1, 1)
delta = (delta * reweights).detach()
elif self.adv_norm_type == "linf":
denorm = torch.norm(delta_grad.view(delta_grad.size(0), -1), dim=1, p=float("inf")).view(-1, 1, 1)
denorm = torch.clamp(denorm, min=1e-8)
delta = (delta + self.adv_lr * delta_grad / denorm).detach()
if self.adv_max_norm > 0:
delta = torch.clamp(delta, -self.adv_max_norm, self.adv_max_norm).detach()
else:
raise ValueError("Norm type {} not specified.".format(self.adv_norm_type))
if isinstance(model, torch.nn.DataParallel):
embeds_init = getattr(model.module, self.base_model).embeddings.word_embeddings(input_ids)
else:
embeds_init = getattr(model, self.base_model).embeddings.word_embeddings(input_ids)
return loss
训练
freelb = FreeLB()
K = 3
for batch_input, batch_label in processor:
loss = freelb.attack(model,inputs,.....)
————————————————
版权声明:本文为CSDN博主「weixin_42001089」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/weixin_42001089/article/details/115458615