在3.3节(线性回归的简洁实现)中,我们通过init
模块来初始化模型的参数。我们也介绍了访问模型参数的简单方法。本节将深入讲解如何访问和初始化模型参数,以及如何在多个层之间共享同一份模型参数。
我们先定义一个与上一节中相同的含单隐藏层的多层感知机。我们依然使用默认方式初始化它的参数,并做一次前向计算。与之前不同的是,在这里我们从nn
中导入了init
模块,它包含了多种模型初始化方法。
import torch
from torch import nn
from torch.nn import init
net = nn.Sequential(nn.Linear(4, 3), nn.ReLU(), nn.Linear(3, 1)) # pytorch已进行默认初始化
print(net)
X = torch.rand(2, 4)
Y = net(X).sum()
输出:
Sequential(
(0): Linear(in_features=4, out_features=3, bias=True)
(1): ReLU()
(2): Linear(in_features=3, out_features=1, bias=True)
)
回忆一下上一节中提到的Sequential
类与Module
类的继承关系。对于Sequential
实例中含模型参数的层,我们可以通过Module
类的parameters()
或者named_parameters
方法来访问所有参数(以迭代器的形式返回),后者除了返回参数Tensor
外还会返回其名字。下面,访问多层感知机net
的所有参数:
print(type(net.named_parameters()))
for name, param in net.named_parameters():
print(name, param.size())
输出:
0.weight torch.Size([3, 4])
0.bias torch.Size([3])
2.weight torch.Size([1, 3])
2.bias torch.Size([1])
可见返回的名字自动加上了层数的索引作为前缀。
我们再来访问net
中单层的参数。对于使用Sequential
类构造的神经网络,我们可以通过方括号[]
来访问网络的任一层。索引0表示隐藏层为Sequential
实例最先添加的层。
for name, param in net[0].named_parameters():
print(name, param.size(), type(param))
输出:
weight torch.Size([3, 4])
bias torch.Size([3])
因为这里是单层的所以没有了层数索引的前缀。另外返回的param
的类型为torch.nn.parameter.Parameter
,其实这是Tensor
的子类,和Tensor
不同的是如果一个Tensor
是Parameter
,那么它会自动被添加到模型的参数列表里,来看下面这个例子。
class MyModel(nn.Module):
def __init__(self, **kwargs):
super(MyModel, self).__init__(**kwargs)
self.weight1 = nn.Parameter(torch.rand(20, 20))
self.weight2 = torch.rand(20, 20)
def forward(self, x):
pass
n = MyModel()
for name, param in n.named_parameters():
print(name)
输出:
weight1
上面的代码中weight1
在参数列表中但是weight2
却没在参数列表中。
因为Parameter
是Tensor
,即Tensor
拥有的属性它都有,比如可以根据data
来访问参数数值,用grad
来访问参数梯度。
weight_0 = list(net[0].parameters())[0]
print(weight_0.data)
print(weight_0.grad) # 反向传播前梯度为None
Y.backward()
print(weight_0.grad)
输出:
tensor([[ 0.2719, -0.0898, -0.2462, 0.0655],
[-0.4669, -0.2703, 0.3230, 0.2067],
[-0.2708, 0.1171, -0.0995, 0.3913]])
None
tensor([[-0.2281, -0.0653, -0.1646, -0.2569],
[-0.1916, -0.0549, -0.1382, -0.2158],
[ 0.0000, 0.0000, 0.0000, 0.0000]])
我们在3.15节(数值稳定性和模型初始化)中提到了PyTorch中nn.Module
的模块参数都采取了较为合理的初始化策略(不同类型的layer具体采样的哪一种初始化方法的可参考源代码)。但我们经常需要使用其他方法来初始化权重。PyTorch的init
模块里提供了多种预设的初始化方法。在下面的例子中,我们将权重参数初始化成均值为0、标准差为0.01的正态分布随机数,并依然将偏差参数清零。
for name, param in net.named_parameters():
if 'weight' in name:
init.normal_(param, mean=0, std=0.01)
print(name, param.data)
输出:
0.weight tensor([[ 0.0030, 0.0094, 0.0070, -0.0010],
[ 0.0001, 0.0039, 0.0105, -0.0126],
[ 0.0105, -0.0135, -0.0047, -0.0006]])
2.weight tensor([[-0.0074, 0.0051, 0.0066]])
下面使用常数来初始化权重参数。
for name, param in net.named_parameters():
if 'bias' in name:
init.constant_(param, val=0)
print(name, param.data)
输出:
0.bias tensor([0., 0., 0.])
2.bias tensor([0.])
有时候我们需要的初始化方法并没有在init
模块中提供。这时,可以实现一个初始化方法,从而能够像使用其他初始化方法那样使用它。在这之前我们先来看看PyTorch是怎么实现这些初始化方法的,例如torch.nn.init.normal_
:
def normal_(tensor, mean=0, std=1):
with torch.no_grad():
return tensor.normal_(mean, std)
可以看到这就是一个inplace改变Tensor
值的函数,而且这个过程是不记录梯度的。
类似的我们来实现一个自定义的初始化方法。在下面的例子里,我们令权重有一半概率初始化为0,有另一半概率初始化为 [ − 10 , − 5 ] [-10,-5] [−10,−5]和 [ 5 , 10 ] [5,10] [5,10]两个区间里均匀分布的随机数。
def init_weight_(tensor):
with torch.no_grad():
tensor.uniform_(-10, 10)
tensor *= (tensor.abs() >= 5).float()
for name, param in net.named_parameters():
if 'weight' in name:
init_weight_(param)
print(name, param.data)
输出:
0.weight tensor([[ 7.0403, 0.0000, -9.4569, 7.0111],
[-0.0000, -0.0000, 0.0000, 0.0000],
[ 9.8063, -0.0000, 0.0000, -9.7993]])
2.weight tensor([[-5.8198, 7.7558, -5.0293]])
此外,参考2.3.2节,我们还可以通过改变这些参数的data
来改写模型参数值同时不会影响梯度:
for name, param in net.named_parameters():
if 'bias' in name:
param.data += 1
print(name, param.data)
输出:
0.bias tensor([1., 1., 1.])
2.bias tensor([1.])
在有些情况下,我们希望在多个层之间共享模型参数。4.1.3节提到了如何共享模型参数: Module
类的forward
函数里多次调用同一个层。此外,如果我们传入Sequential
的模块是同一个Module
实例的话参数也是共享的,下面来看一个例子:
linear = nn.Linear(1, 1, bias=False)
net = nn.Sequential(linear, linear)
print(net)
for name, param in net.named_parameters():
init.constant_(param, val=3)
print(name, param.data)
输出:
Sequential(
(0): Linear(in_features=1, out_features=1, bias=False)
(1): Linear(in_features=1, out_features=1, bias=False)
)
0.weight tensor([[3.]])
在内存中,这两个线性层其实一个对象:
print(id(net[0]) == id(net[1]))
print(id(net[0].weight) == id(net[1].weight))
输出:
True
True
因为模型参数里包含了梯度,所以在反向传播计算时,这些共享的参数的梯度是累加的:
x = torch.ones(1, 1)
y = net(x).sum()
print(y)
y.backward()
print(net[0].weight.grad) # 单次梯度是3,两次所以就是6
输出:
tensor(9., grad_fn=)
tensor([[6.]])
注:本节与原书此节有一些不同,原书传送门