- 拉曼光谱增强技术,农药“指纹图谱“数据库?
百态老人
数据库
构建拉曼光谱增强技术与农药"指纹图谱"数据库是农药成分快速检测领域的前沿方向,其核心在于通过纳米材料增强效应和人工智能算法解析,实现对农药分子的高灵敏度、高特异性识别。以下从技术原理、数据库构建、应用场景及挑战四方面深入解析:一、拉曼光谱增强技术原理1.表面增强拉曼散射(SERS)电磁增强机制:利用金/银纳米结构(纳米颗粒、纳米棒、纳米星)的局域表面等离子体共振效应(LSPR),在激光激发下产生"
- 制造业汽车业数字化转型新方案——飞速创软低代码平台
人工智能
2023年7月20日-2023年7月21日2023汽车业数字化大会&制造业数字化大会在佛山顺德盛大开幕!深圳飞速创软科技有限公司如邀参加展会。本次大会聚焦于数字化转型新场景中企业承压,IT行业可以扮演怎样的角色。如今AGI时代来临,AGI将是第四次工业革命的核心驱动力。人工智能作为最先进生产力,在不断冲击着各个行业,一定程度上要求行业的现有业务结构重构,以实现当今复杂多变、极速发展的时代。在面对多
- SpringAI 搭建智能体(二):搭建客服系统智能体
drebander
AI编程springAIAgent
在现代人工智能应用中,智能体(Agent)是一个重要的概念,它的核心能力是自主性与灵活性。一个智能体不仅能够理解用户的需求,还能拆解任务、调用工具完成具体操作,并在复杂场景中高效运行。在本篇博客中,我们将围绕一个基于SpringAI的智能体实现,深入探讨智能体的概念、构建流程以及实际应用场景。1.什么是智能体?智能体是一种能够根据目标自主执行任务的系统。与传统的AI模型生成内容的模式不同,智能体通
- 目标检测算法以及常用库概述
YOLO大师
目标检测算法人工智能
YOLO目标检测创新改进与实战案例专栏专栏目录:YOLO有效改进系列及项目实战目录包含卷积,主干注意力,检测头等创新机制以及各种目标检测分割项目实战案例专栏链接:YOLO基础解析+创新改进+实战案例目标检测是在图像中发现并识别物体的过程,它是深度学习和图像处理领域的重要成果之一。在创建物体定位时,识别物体时,常见的一种方法是使用边界框。这种方法具有很高的通用,可以训练目标检测模型来识别和检测多个特
- PyTorch中,view, reshape, 或者 permute 的区别和联系
不是吧这都有重名
pytorchpytorch人工智能python
在PyTorch中,view、reshape和permute都是用于改变张量形状的方法,但它们的工作方式和使用场景略有不同。以下是它们的区别和联系:1.view功能:view函数用于改变张量的形状,返回的是一个新张量,它与原始张量共享数据内存(相当于浅拷贝)。要求:view只能在张量是连续的(contiguous)的情况下使用。如果张量在内存中不是连续存储的(例如经过transpose或permu
- PyTorch transpose、permute、view和einops.rearrange
qq_27390023
pytorch人工智能python深度学习
einops.rearrange和PyTorch中的transpose、permute以及view都用于张量的操作,但它们的功能侧重和用法各有不同。以下是它们的详细比较和区别:1.功能和用途对比功能/操作einops.rearrangetorch.transposetorch.permutetorch.view维度交换支持直接通过模式字符串交换维度,同时支持插入、移除维度交换两个特定维度以任意顺序
- pytorch torch.vmap函数介绍
qq_27390023
pytorch人工智能python
torch.vmap是PyTorch提供的一个高效矢量化映射函数,用于对批量数据上的操作进行自动矢量化。它可以显著提高代码的性能和可读性,避免显式使用循环来操作批量数据。torch.vmap的核心功能对函数进行批量化操作。自动扩展函数,使其可以作用于批量输入(即N个样本)。提供对批量维度的灵活控制,包括指定输入输出的批量维度。函数签名torch.vmap(func,in_dims=0,out_di
- 飞速搭震撼上线 开启软件开发智能化新篇章
低代码
近日,飞速低代码开发平台迎来了一项具有里程碑意义的重大更新——“飞速搭”正式上线。飞速搭通过深度融合前沿的人工智能技术,实现了从需求文档到应用发布的无缝衔接,一键智能生成应用,为软件开发领域带来了全新的突破和变革。“飞速搭”的实现路径高效而清晰。用户只需将需求文档或需求描述输入给预训练的大模型,这一步骤极大地简化了传统软件开发中繁琐的需求分析和文档编写过程,使用户能够更专注于核心需求的表达。大模型
- 基于CNN+Transformer混合模型实现交通流量时序预测(PyTorch版)
矩阵猫咪
cnntransformerpytorch卷积神经网络深度学习
前言系列专栏:【深度学习:算法项目实战】✨︎涉及医疗健康、财经金融、商业零售、食品饮料、运动健身、交通运输、环境科学、社交媒体以及文本和图像处理等诸多领域,讨论了各种复杂的深度神经网络思想,如卷积神经网络、循环神经网络、生成对抗网络、门控循环单元、长短期记忆、自然语言处理、深度强化学习、大型语言模型和迁移学习。随着城市化进程的加速,交通流量预测成为城市交通管理与规划中的关键任务。准确的交通流量预测
- pytorch中tensor的底层存储方式,维度变换permute/view/reshape,维度大小和数目
lppfwl
pytorchpytorch
记录一下pytorch中tensor的底层存储方式,维度变换permute/view/reshape,维度大小和数目。tensor的底层存储方式tensor的底层存储是按照行优先的原则存储的,比如:>>importtorch>>a=tensor.rand((2,2,3))>>atensor([[[0.1345,0.4907,0.8740],[0.4888,0.5481,0.8513]],[[0.1
- 智能体(Agent)如何具备自我决策能力的机理与实现方法
由数入道
人工智能应急管理人工智能自然语言处理
一、智能体自我决策能力的机理从人工智能和控制理论的角度看,智能体能够“自我决策”的核心在于其“感知–认知–行动”的循环过程,以及在此过程中引入自主学习与自主优化的机制。经过优化与补充,智能体具备自我决策能力的机理可以分解为以下五个部分:1.自主感知与信息获取智能体通过传感器、数据库、互联网信息等多源数据采集,构建全面的环境感知能力。通过数据清洗、去噪、融合等方法,提升感知数据的可靠性,结合高维特征
- 大语言模型应用指南:OpenAI大语言模型简介
AI大模型应用之禅
AI大模型与大数据计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
大语言模型应用指南:OpenAI大语言模型简介1.背景介绍1.1问题的由来在过去几年中,自然语言处理(NLP)领域取得了长足的进步,这主要归功于大型语言模型(LargeLanguageModels,LLMs)的出现和发展。LLMs是一种基于深度学习的人工智能模型,能够从大量文本数据中学习语言模式和语义关系,从而生成看似人类写作的自然语言输出。随着计算能力和数据可用性的不断提高,LLMs的规模也在不
- 通用免杀概论
曦梦逐影
安全
免杀:病毒木马免于被杀毒软件查杀,基于免杀的技术包含逆向工程、反汇编、系统漏洞等hack技术企业目前标配防护:EDR(终端主机防护)、IPS、IDS、HDR(流量监控)、XDR(相较于EDR更高级),早期的话,基于Server端、Agent端,以及后面更高级的Sass云端部署,早期赛门铁克比较多,目前亚信防毒墙。国内金融、护网:卡巴斯基居多。国外的话强对抗:猎鹰、S1(7x24小时人工智能)架构为
- 一、深度学习的基本介绍
关关钧
深度学习深度学习人工智能神经网络
机器学习的基本步骤:前馈运算、反向传播计算梯度、根据梯度更新参数值。一、定义及基本概念深度学习,就是一种利用深度人工神经网络来进行自动分类、预测和学习的技术。它可以从海量的数据中自动学习,找寻数据中的特征。所以说,它的本质就是自动提取特征的能力。可以说,深度学习就等于深度人工神经网络。一般认为超过三层的神经网络就可以叫做深度神经网络。深度学习属于一种特殊的人工智能技术。反向传播算法:此算法是人工神
- 【QT开发】所有控件基类QWidget类详解及实战应用
I'mAlex
QT开发教程qt开发语言
QWidget是Qt中所有用户界面对象的基类,掌握它的用法对于学习和使用Qt进行GUI开发至关重要。通过本篇文章的学习,你应该对QWidget有了全面的理解,能够在自己的项目中正确使用它。博主简介:现任阿里巴巴嵌入式技术专家,15年工作经验,深耕嵌入式+人工智能领域,精通嵌入式领域开发、技术管理、简历招聘面试。CSDN优质创作者,提供产品测评、学习辅导、简历面试辅导、毕设辅导、项目开发、C/C++
- # AI绘图中的Embedding、CLIP、Flux中的Clip与LCM SDXL加速生成解析
迪小莫学AI
人工智能embedding
AI绘图中的Embedding、CLIP、Flux中的Clip与LCMSDXL加速生成解析在现代AI绘图和深度学习中,涉及了多个复杂的概念和技术,这些技术在图像生成、训练加速以及多模态学习等方面起着至关重要的作用。在这篇博客中,我们将讨论几个关键概念:Embedding、CLIP模型、Flux中的Clip,以及LCMSDXL加速生成技术的实现原理。1.AI绘图中的Embedding是什么意思?在A
- Python文件操作(json、csv、tsv、excel、pickle文件序列化)
herosunly
机器学习入门之工具篇Python新手快速入门python文件操作
大家好,我是herosunly。985院校硕士毕业,现担任算法研究员一职,热衷于机器学习算法研究与应用。曾获得阿里云天池比赛第一名,CCF比赛第二名,科大讯飞比赛第三名。拥有多项发明专利。对机器学习和深度学习拥有自己独到的见解。曾经辅导过若干个非计算机专业的学生进入到算法行业就业。希望和大家一起成长进步。 本文主要介绍了Python文件操作(json、csv、tsv、excel、pickle
- c++介绍与入门基础(详细总结)
X_Pqk
c++开发语言
操作系统以及大型系统软件开发服务器端开发游戏开发嵌入式和物联网领域数字图像处理人工智能分布式应用C++关键字命名空间实际工程应用中:命名空间的作用:命名空间需求展示命名空间定义命名空间使用C++输入&输出c++的《helloworld》输入&输出说明:输入&输出展示std命名空间的使用惯例缺省参数缺省参数概念缺省参数分类函数重载函数重载概念C++支持函数重载的原理–名字修饰(nameManglin
- A novice’s attempt at translating
LuminaryDream
英语笔记笔记
声明:英文原文来自扇贝英语app,中文翻译仅供参考Businessesarealreadybeingradicallytransformedbyartificialintelligence(AI).企业已经被人工智能(AI)彻底改变。Toolsnowexistthatofferinstantaneous,high-qualityresultsinimprovingcertainoperations
- 《剖析Transformer架构:自然语言处理飞跃的幕后英雄》
人工智能深度学习
在人工智能的迅猛发展进程中,自然语言处理(NLP)领域取得了令人瞩目的突破,而Transformer架构无疑是这场变革的核心驱动力。自从2017年在论文《AttentionIsAllYouNeed》中被提出,Transformer便在NLP领域引发了一场革命,彻底改变了模型处理和理解人类语言的方式。打破传统枷锁,开创并行计算新时代在Transformer出现之前,循环神经网络(RNN)及其变体,如
- Python的未来 future模块
gftygff
分享一下我老师大神的人工智能教程!零基础,通俗易懂!http://blog.csdn.net/jiangjunshow也欢迎大家转载本篇文章。分享知识,造福人民,实现我们中华民族伟大复兴!转载:http://omencathay.itpub.net/post/30163/414347简单介绍一下python未来将会支持的一些语言特点,虽然Ibm的网站上也有介绍.但是太凌乱了.而且中翻译过后,代码的
- AI学习指南Ollama篇-Ollama简介
俞兆鹏
AI学习指南人工智能ollama
一、定义大语言模型(LLM)是一种基于深度学习的自然语言处理模型,能够生成文本、回答问题、翻译语言、撰写代码等。这些模型通过海量的文本数据进行训练,学习语言的模式和结构,从而能够生成自然流畅的文本内容。随着技术的不断进步,大语言模型在各个领域都展现出了巨大的潜力。二、应用场景大语言模型的应用场景非常广泛,以下是一些常见的例子:聊天机器人:通过自然语言理解与生成,为用户提供智能对话服务。内容创作:帮
- 【Python高阶篇】探索人工智能:使用Python构建一个简单的聊天机器人
码农必胜客
python人工智能机器人
人工智能是计算机科学中一个非常热门的领域,近年来得到了越来越多的关注。它通过模拟人类思考过程和智能行为来实现对复杂任务的自主处理和学习,已经被广泛应用于许多领域,包括语音识别、自然语言处理、机器人技术、图像识别和推荐系统等。本文将介绍如何使用Python构建一个简单的聊天机器人,以展示人工智能的基本原理和应用。我们将使用Python语言和自然语言处理库来构建一个聊天机器人,该机器人可以接收用户的输
- 深度ResUnet与ResUnet++:新一代的语义分割神器
倪澄莹George
深度ResUnet与ResUnet++:新一代的语义分割神器去发现同类优质开源项目:https://gitcode.com/在这个数据驱动的时代,深度学习模型在图像处理领域展现出了强大的潜力,尤其是在语义分割任务中。今天,我们向您推荐一个基于PyTorch实现的开源项目——DeepResUnet和ResUnet++。这两个模型源自于学术界的最新研究,旨在提高图像分割的准确性和效率。项目介绍这个开源
- 医学类 使用TransUNet、UNet、DeepLabV3+、HRNet、PSPNet 模型对息肉分割数据集进行训练、评估和可视化 EDD2020息肉数据集分割数据集
计算机C9硕士_算法工程师
数据集语义分割医学类数据集语义分割息肉TransUNetUNet
息肉数据集/息肉瘤分割项目解决(已处理好:EDD2020数据集(EndoscopyDiseaseDetectionandSegmentationChallenge)该息肉分割数据集主要包含人体生长的(肠胃)息肉用于器官内部息肉瘤分割,息肉目标检测,息肉定位任务息肉分割是一个重要的医学影像分析任务,特别是在内窥镜检查中。EDD2020数据集是一个很好的起点。我们将使用几种流行的深度学习模型(如Tra
- 深入解析LangChain框架:使用Python开发LLM应用的全生命周期指南
m0_57781768
langchainpython网络
深入解析LangChain框架:使用Python开发LLM应用的全生命周期指南前言在当前的人工智能浪潮中,大型语言模型(LLM)已成为众多应用的核心。LangChain是一个专为开发大型语言模型应用而设计的框架,它简化了LLM应用的整个生命周期,包括开发、生产化和部署。本文将详细介绍LangChain框架的各个方面,涵盖其核心组件、第三方集成、开发教程、API参考等,并通过实际案例展示如何使用La
- L8打卡学习笔记
无涯学徒1998
学习笔记支持向量机
本文为365天深度学习训练营中的学习记录博客原作者:K同学啊SVM与集成学习SVMSVM线性模型SVM非线性模型SVM常用参数集成学习随机森林导入数据查看数据信息数据分析随机森林模型预测结果结果分析个人总结SVM超平面:SVM在特征空间中寻找一个能够最大化类别间隔的超平面,称为最大间隔超平面。这个超平面就是将数据集分成不同类别的边界。支持向量:支持向量是离分隔超平面最近的样本点,它们决定了超平面的
- P5学习笔记
无涯学徒1998
pythonpytorch
本文为365天深度学习训练营中的学习记录博客原作者:K同学啊运动鞋品牌识别设置GPU导入数据构建CNN模型编写训练函数编写测试函数设置动态学习率等间隔动态调整自定义调整多间隔调整余弦退火正式训练结果可视化使用模型进行预测个人总结设置GPUimporttorchimporttorch.nnasnnimporttorchvision.transformsastransformsimporttorchv
- 深度学习中高斯噪声:为什么以及如何使用
小白学视觉
深度学习人工智能
点击上方“小白学视觉”,选择加"星标"或“置顶”重磅干货,第一时间送达来源:DeepHubIMBA本文约1800字,建议阅读8分钟高斯噪声是深度学习中用于为输入数据或权重添加随机性的一种技术。在数学上,高斯噪声是一种通过向输入数据添加均值为零和标准差(σ)的正态分布随机值而产生的噪声。正态分布,也称为高斯分布,是一种连续概率分布,由其概率密度函数(PDF)定义:pdf(x)=(1/(σ*sqrt(
- Jupyter Notebook 与 PyTorch 配置教程
如若123
jupyterpytorchide
JupyterNotebook与PyTorch配置教程安装build-essential:sudoaptinstallbuild-essential安装编译软件所需的基本工具。安装Python3.8:sudoaptinstallpython3.8如果未安装Python3.8,执行此命令进行安装。下载Miniconda:wgethttps://repo.anaconda.com/miniconda/
- java Illegal overloaded getter method with ambiguous type for propert的解决
zwllxs
javajdk
好久不来iteye,今天又来看看,哈哈,今天碰到在编码时,反射中会抛出
Illegal overloaded getter method with ambiguous type for propert这么个东东,从字面意思看,是反射在获取getter时迷惑了,然后回想起java在boolean值在生成getter时,分别有is和getter,也许我们的反射对象中就有is开头的方法迷惑了jdk,
- IT人应当知道的10个行业小内幕
beijingjava
工作互联网
10. 虽然IT业的薪酬比其他很多行业要好,但有公司因此视你为其“佣人”。
尽管IT人士的薪水没有互联网泡沫之前要好,但和其他行业人士比较,IT人的薪资还算好点。在接下的几十年中,科技在商业和社会发展中所占分量会一直增加,所以我们完全有理由相信,IT专业人才的需求量也不会减少。
然而,正因为IT人士的薪水普遍较高,所以有些公司认为给了你这么多钱,就把你看成是公司的“佣人”,拥有你的支配
- java 实现自定义链表
CrazyMizzz
java数据结构
1.链表结构
链表是链式的结构
2.链表的组成
链表是由头节点,中间节点和尾节点组成
节点是由两个部分组成:
1.数据域
2.引用域
3.链表的实现
&nbs
- web项目发布到服务器后图片过一会儿消失
麦田的设计者
struts2上传图片永久保存
作为一名学习了android和j2ee的程序员,我们必须要意识到,客服端和服务器端的交互是很有必要的,比如你用eclipse写了一个web工程,并且发布到了服务器(tomcat)上,这时你在webapps目录下看到了你发布的web工程,你可以打开电脑的浏览器输入http://localhost:8080/工程/路径访问里面的资源。但是,有时你会突然的发现之前用struts2上传的图片
- CodeIgniter框架Cart类 name 不能设置中文的解决方法
IT独行者
CodeIgniterCart框架
今天试用了一下CodeIgniter的Cart类时遇到了个小问题,发现当name的值为中文时,就写入不了session。在这里特别提醒一下。 在CI手册里也有说明,如下:
$data = array(
'id' => 'sku_123ABC',
'qty' => 1,
'
- linux回收站
_wy_
linux回收站
今天一不小心在ubuntu下把一个文件移动到了回收站,我并不想删,手误了。我急忙到Nautilus下的回收站中准备恢复它,但是里面居然什么都没有。 后来我发现这是由于我删文件的地方不在HOME所在的分区,而是在另一个独立的Linux分区下,这是我专门用于开发的分区。而我删除的东东在分区根目录下的.Trash-1000/file目录下,相关的删除信息(删除时间和文件所在
- jquery回到页面顶端
知了ing
htmljquerycss
html代码:
<h1 id="anchor">页面标题</h1>
<div id="container">页面内容</div>
<p><a href="#anchor" class="topLink">回到顶端</a><
- B树、B-树、B+树、B*树
矮蛋蛋
B树
原文地址:
http://www.cnblogs.com/oldhorse/archive/2009/11/16/1604009.html
B树
即二叉搜索树:
1.所有非叶子结点至多拥有两个儿子(Left和Right);
&nb
- 数据库连接池
alafqq
数据库连接池
http://www.cnblogs.com/xdp-gacl/p/4002804.html
@Anthor:孤傲苍狼
数据库连接池
用MySQLv5版本的数据库驱动没有问题,使用MySQLv6和Oracle的数据库驱动时候报如下错误:
java.lang.ClassCastException: $Proxy0 cannot be cast to java.sql.Connec
- java泛型
百合不是茶
java泛型
泛型
在Java SE 1.5之前,没有泛型的情况的下,通过对类型Object的引用来实现参数的“任意化”,任意化的缺点就是要实行强制转换,这种强制转换可能会带来不安全的隐患
泛型的特点:消除强制转换 确保类型安全 向后兼容
简单泛型的定义:
泛型:就是在类中将其模糊化,在创建对象的时候再具体定义
class fan
- javascript闭包[两个小测试例子]
bijian1013
JavaScriptJavaScript
一.程序一
<script>
var name = "The Window";
var Object_a = {
name : "My Object",
getNameFunc : function(){
var that = this;
return function(){
- 探索JUnit4扩展:假设机制(Assumption)
bijian1013
javaAssumptionJUnit单元测试
一.假设机制(Assumption)概述 理想情况下,写测试用例的开发人员可以明确的知道所有导致他们所写的测试用例不通过的地方,但是有的时候,这些导致测试用例不通过的地方并不是很容易的被发现,可能隐藏得很深,从而导致开发人员在写测试用例时很难预测到这些因素,而且往往这些因素并不是开发人员当初设计测试用例时真正目的,
- 【Gson四】范型POJO的反序列化
bit1129
POJO
在下面这个例子中,POJO(Data类)是一个范型类,在Tests中,指定范型类为PieceData,POJO初始化完成后,通过
String str = new Gson().toJson(data);
得到范型化的POJO序列化得到的JSON串,然后将这个JSON串反序列化为POJO
import com.google.gson.Gson;
import java.
- 【Spark八十五】Spark Streaming分析结果落地到MySQL
bit1129
Stream
几点总结:
1. DStream.foreachRDD是一个Output Operation,类似于RDD的action,会触发Job的提交。DStream.foreachRDD是数据落地很常用的方法
2. 获取MySQL Connection的操作应该放在foreachRDD的参数(是一个RDD[T]=>Unit的函数类型),这样,当foreachRDD方法在每个Worker上执行时,
- NGINX + LUA实现复杂的控制
ronin47
nginx lua
安装lua_nginx_module 模块
lua_nginx_module 可以一步步的安装,也可以直接用淘宝的OpenResty
Centos和debian的安装就简单了。。
这里说下freebsd的安装:
fetch http://www.lua.org/ftp/lua-5.1.4.tar.gz
tar zxvf lua-5.1.4.tar.gz
cd lua-5.1.4
ma
- java-递归判断数组是否升序
bylijinnan
java
public class IsAccendListRecursive {
/*递归判断数组是否升序
* if a Integer array is ascending,return true
* use recursion
*/
public static void main(String[] args){
IsAccendListRecursiv
- Netty源码学习-DefaultChannelPipeline2
bylijinnan
javanetty
Netty3的API
http://docs.jboss.org/netty/3.2/api/org/jboss/netty/channel/ChannelPipeline.html
里面提到ChannelPipeline的一个“pitfall”:
如果ChannelPipeline只有一个handler(假设为handlerA)且希望用另一handler(假设为handlerB)
来
- Java工具之JPS
chinrui
java
JPS使用
熟悉Linux的朋友们都知道,Linux下有一个常用的命令叫做ps(Process Status),是用来查看Linux环境下进程信息的。同样的,在Java Virtual Machine里面也提供了类似的工具供广大Java开发人员使用,它就是jps(Java Process Status),它可以用来
- window.print分页打印
ctrain
window
function init() {
var tt = document.getElementById("tt");
var childNodes = tt.childNodes[0].childNodes;
var level = 0;
for (var i = 0; i < childNodes.length; i++) {
- 安装hadoop时 执行jps命令Error occurred during initialization of VM
daizj
jdkhadoopjps
在安装hadoop时,执行JPS出现下面错误
[slave16]
[email protected]:/tmp/hsperfdata_hdfs# jps
Error occurred during initialization of VM
java.lang.Error: Properties init: Could not determine current working
- PHP开发大型项目的一点经验
dcj3sjt126com
PHP重构
一、变量 最好是把所有的变量存储在一个数组中,这样在程序的开发中可以带来很多的方便,特别是当程序很大的时候。变量的命名就当适合自己的习惯,不管是用拼音还是英语,至少应当有一定的意义,以便适合记忆。变量的命名尽量规范化,不要与PHP中的关键字相冲突。 二、函数 PHP自带了很多函数,这给我们程序的编写带来了很多的方便。当然,在大型程序中我们往往自己要定义许多个函数,几十
- android笔记之--向网络发送GET/POST请求参数
dcj3sjt126com
android
使用GET方法发送请求
private static boolean sendGETRequest (String path,
Map<String, String> params) throws Exception{
//发送地http://192.168.100.91:8080/videoServi
- linux复习笔记 之bash shell (3) 通配符
eksliang
linux 通配符linux通配符
转载请出自出处:
http://eksliang.iteye.com/blog/2104387
在bash的操作环境中有一个非常有用的功能,那就是通配符。
下面列出一些常用的通配符,如下表所示 符号 意义 * 万用字符,代表0个到无穷个任意字符 ? 万用字符,代表一定有一个任意字符 [] 代表一定有一个在中括号内的字符。例如:[abcd]代表一定有一个字符,可能是a、b、c
- Android关于短信加密
gqdy365
android
关于Android短信加密功能,我初步了解的如下(只在Android应用层试验):
1、因为Android有短信收发接口,可以调用接口完成短信收发;
发送过程:APP(基于短信应用修改)接受用户输入号码、内容——>APP对短信内容加密——>调用短信发送方法Sm
- asp.net在网站根目录下创建文件夹
hvt
.netC#hovertreeasp.netWeb Forms
假设要在asp.net网站的根目录下建立文件夹hovertree,C#代码如下:
string m_keleyiFolderName = Server.MapPath("/hovertree");
if (Directory.Exists(m_keleyiFolderName))
{
//文件夹已经存在
return;
}
else
{
try
{
D
- 一个合格的程序员应该读过哪些书
justjavac
程序员书籍
编者按:2008年8月4日,StackOverflow 网友 Bert F 发帖提问:哪本最具影响力的书,是每个程序员都应该读的?
“如果能时光倒流,回到过去,作为一个开发人员,你可以告诉自己在职业生涯初期应该读一本, 你会选择哪本书呢?我希望这个书单列表内容丰富,可以涵盖很多东西。”
很多程序员响应,他们在推荐时也写下自己的评语。 以前就有国内网友介绍这个程序员书单,不过都是推荐数
- 单实例实践
跑龙套_az
单例
1、内部类
public class Singleton {
private static class SingletonHolder {
public static Singleton singleton = new Singleton();
}
public Singleton getRes
- PO VO BEAN 理解
q137681467
VODTOpo
PO:
全称是 persistant object持久对象 最形象的理解就是一个PO就是数据库中的一条记录。 好处是可以把一条记录作为一个对象处理,可以方便的转为其它对象。
BO:
全称是 business object:业务对象 主要作用是把业务逻辑封装为一个对象。这个对
- 战胜惰性,暗自努力
金笛子
努力
偶然看到一句很贴近生活的话:“别人都在你看不到的地方暗自努力,在你看得到的地方,他们也和你一样显得吊儿郎当,和你一样会抱怨,而只有你自己相信这些都是真的,最后也只有你一人继续不思进取。”很多句子总在不经意中就会戳中一部分人的软肋,我想我们每个人的周围总是有那么些表现得“吊儿郎当”的存在,是否你就真的相信他们如此不思进取,而开始放松了对自己的要求随波逐流呢?
我有个朋友是搞技术的,平时嘻嘻哈哈,以
- NDK/JNI二维数组多维数组传递
wenzongliang
二维数组jniNDK
多维数组和对象数组一样处理,例如二维数组里的每个元素还是一个数组 用jArray表示,直到数组变为一维的,且里面元素为基本类型,去获得一维数组指针。给大家提供个例子。已经测试通过。
Java_cn_wzl_FiveChessView_checkWin( JNIEnv* env,jobject thiz,jobjectArray qizidata)
{
jint i,j;
int s