机器学习中的数学原理——线性可分问题

这个专栏主要是用来分享一下我在机器学习中的学习笔记及一些感悟,也希望对你的学习有帮助哦!感兴趣的小伙伴欢迎私信或者评论区留言!这一篇就更新一下《白话机器学习中的数学——线性可分问题》!

 一、什么是线性可分问题

线性可分就是说可以用一个线性函数把两类样本分开,比如二维空间中的直线、三维空间中的平面以及高维空间中的线性函数。

二、案例分析 

我们之前学习了感知机模型,这是一个非常简单而且容易理解的模型,相应的它有很多缺点,最大的缺点就是它只能解决线性可分的问题。

那到底什么是线性可分问题呢?刚才我们尝试的是用直线对训练数据进行分类,现在假设有下面 这张图里的数据,其中圆点为 1,叉号为 −1,如果只用一条直线对这些数据进行分类,应该画一条什么样的线呢?

机器学习中的数学原理——线性可分问题_第1张图片

这个怎么看都不能只用一条直线分类,所以这是无法做到的。线性可分指的就是能够使用直线分类的情 况,像这样不能用直线分类的就不是线性可分。

像照片这类的图像分类就不是线性可分了。这类图像数据的维度一般会很高,所以无法可视化。但是想一想 也知道,根据图像特征进行分类的任务肯定不是那么简单的。我想大部分情况下是线性不可分的。

感知机是非常简单的模型,基本不会被应用在实际的问题中。前提到的感知机也被称为简单感知机单层感知机,真 的是很弱的模型。不过,既然有单层感知机,那么就会有多层感 知机。实际上多层感知机就是神经网络了。

神经网络是表现力非常高的模型。这在我们之后的学习中会经常接触到。

你可能感兴趣的:(机器学习,白话机器学习的数学学习笔记,人工智能,算法,深度学习,python)