- 双目立体视觉(6.1)测距
2501_90596733
双目立体视觉计算机视觉人工智能opencv
在计算机视觉领域,双目相机测距是一项关键技术,它通过模拟人类双眼的视觉机制,利用两个相机从不同角度拍摄同一场景,进而计算出物体的深度信息。一、双目测距的基本原理1.1视差图(DisparityMap)视差图是一种存储了单视图所有像素的视差值的二维图像。视差值是同一物体在左右两幅图像中的列坐标差,即通过比较左右两幅图像的对应像素差异来计算物体的深度信息。视差图是以图像对中任一幅图像为基准生成的,其大
- 体育数据分析:竞技表现优化与商业价值挖掘的技术范式
Tina0898
数据分析数据挖掘
体育数据分析作为一门交叉学科,正在重塑现代体育产业的发展轨迹。通过多源数据采集、机器学习建模和商业智能分析,体育数据分析已经形成了完整的技术体系和应用生态。本文将深入探讨体育数据分析的技术架构、应用场景和商业价值。一、数据采集与处理技术架构现代体育数据采集系统采用分布式架构,集成了计算机视觉、惯性测量单元(IMU)和生物电传感器等多模态数据源。计算机视觉系统通过高速摄像机和深度学习算法,可实现运动
- 新型模型架构(参数化状态空间模型、状态空间模型变种)
三月七꧁ ꧂
LLM语言模型gpt文心一言promptembeddingAIGCagi
文章目录参数化状态空间模型状态空间模型变种 Transformer模型自问世以来,在自然语言处理、计算机视觉等多个领域得到了广泛应用,并展现出卓越的数据表示与建模能力。然而,Transformer的自注意力机制在计算每个词元时都需要利用到序列中所有词元的信息,这导致计算和存储复杂度随输入序列长度的平方级别增长。在处理长序列时,这种复杂性会消耗大量的计算资源与存储空间。为了解决这个问题,研究人
- 【有啥问啥】深入浅出:大模型应用工具 Ollama 技术详解
有啥问啥
大模型科普人工智能深度学习
深入浅出:大模型应用工具Ollama技术详解引言近年来,大型模型(LargeModels,LLMs)技术突飞猛进,在自然语言处理、计算机视觉、语音识别等领域展现出强大的能力。然而,部署和运行这些庞大的模型往往面临着环境配置复杂、资源需求高昂等挑战。为了解决这些痛点,Ollama应运而生。本文将深入探讨Ollama,一个旨在简化大模型本地运行和管理的开源工具,帮助读者理解其核心概念、优势以及应用场景
- 基于YOLOv5深度学习的田间杂草检测系统:UI界面 + YOLOv5 + 数据集详细教程
深度学习&目标检测实战项目
YOLO深度学习uiYOLOv5人工智能计算机视觉
引言随着农业科技的进步,智能化农业越来越受到重视,尤其是通过计算机视觉技术对作物进行监测和管理。在农业生产中,杂草的生长对作物的生长产生了负面影响,因此准确地检测和识别田间杂草至关重要。本文将详细介绍如何构建一个基于深度学习的田间杂草检测系统,使用YOLOv5模型进行目标检测,并提供一个用户友好的界面。我们将分步骤进行,包括环境配置、数据集准备、模型训练、实时杂草检测系统的实现等内容。目录引言目录
- 00计算机视觉学习内容
依旧阳光的老码农
计算机视觉计算机视觉人工智能
计算机视觉(ComputerVision)开发需要掌握数学基础、编程语言、图像处理、机器学习、深度学习等多个方面的知识。以下是一个系统的学习路线:1️⃣数学基础(核心理论支撑)计算机视觉涉及很多数学概念,以下是必备数学知识:✅线性代数(矩阵运算是计算机视觉的核心)向量、矩阵运算(加减、乘法、转置)特征值与特征向量SVD(奇异值分解),用于图像压缩、降维齐次坐标变换(用于3D计算机视觉)✅概率统计(
- 01计算机视觉学习计划
依旧阳光的老码农
计算机视觉计算机视觉人工智能
计算机视觉系统学习计划(3-6个月)本计划按照数学→编程→图像处理→机器学习→深度学习→3D视觉→项目实战的顺序,确保从基础到高级,结合理论和实践。第一阶段(第1-2个月):基础夯实✅目标:掌握数学基础、Python/C++编程、基本图像处理1️⃣数学基础(2周)每日2小时线性代数:矩阵运算、特征值分解(推荐《线性代数及其应用》)概率统计:高斯分布、贝叶斯定理微积分:偏导数、梯度下降傅里叶变换:图
- 特斯拉FSD系统:自动驾驶的未来
百态老人
人工智能笔记
FSD系统概述FSD(FullSelf-Driving)系统是特斯拉研发的一套高级自动驾驶技术,旨在实现车辆在各种道路和驾驶场景下的完全自动驾驶。FSD系统通过集成先进的计算机视觉、深度学习、传感器融合等技术,利用车辆上安装的多种传感器和先进的计算机视觉技术,实现对周围环境的感知和理解。特斯拉通过不断收集和分析实际道路数据,持续优化其自动驾驶算法,使得FSD技术的安全性和可靠性得到了大幅提升.FS
- 特斯拉FSD不同版本的进化
AI智能涌现深度研究
AI大模型应用入门实战与进阶javapythonjavascriptkotlingolang架构人工智能
特斯拉,FSD,自动驾驶,深度学习,计算机视觉,强化学习,神经网络,模型训练1.背景介绍特斯拉自2016年推出Autopilot以来,一直致力于开发全自动驾驶系统,其目标是实现完全无人驾驶,让汽车能够像人类一样感知周围环境,做出安全可靠的驾驶决策。FSD(FullSelf-Driving)是特斯拉自动驾驶系统的最高级别,它旨在实现车辆在任何道路和环境条件下都能安全自主驾驶的能力。FSD的开发是一个
- 使用 Dlib 库进行人脸检测和人脸识别
萧鼎
python基础到进阶教程计算机视觉人工智能python人脸识别人脸检测
使用Dlib库进行人脸检测和人脸识别什么是Dlib?Dlib是一个广泛使用的C++库,提供了多种用于机器学习和计算机视觉的工具。它包含了人脸检测、人脸识别、物体检测、图像处理等功能。Dlib具有高效、易用的Python接口,因此它也被广泛应用于Python中进行深度学习和计算机视觉任务。安装Dlib首先,我们需要在Python环境中安装Dlib库。你可以通过pip进行安装:pipinstalldl
- 大模型不确定性量化与提示词校准
AI天才研究院
DeepSeekR1&大数据AI人工智能大模型ChatGPTjavapythonjavascriptkotlingolang架构人工智能大厂程序员硅基计算碳基计算认知计算生物计算深度学习神经网络大数据AIGCAGILLM系统架构设计软件哲学Agent程序员实现财富自由
大模型不确定性量化与提示词校准关键词大模型不确定性量化提示词校准自然语言处理计算机视觉推荐系统摘要本文旨在探讨大模型不确定性量化与提示词校准这一前沿技术。首先,我们将介绍大模型不确定性的背景及其重要性,然后深入探讨不确定性量化的原理和方法,以及提示词校准在其中的作用。通过具体案例分析,我们将展示这些技术在自然语言处理、计算机视觉和推荐系统等领域的应用。最后,我们将讨论实现大模型不确定性量化与提示词
- 计算机视觉 vs 机器视觉 | 机器学习 vs 深度学习:核心差异与行业启示
程序员Linc
计算机视觉计算机视觉机器学习深度学习机器视觉
一、计算机视觉(CV)与机器视觉(MV):从学术研究到工业落地的分水岭1.定义与目标差异计算机视觉(CV)目标是赋予计算机类似人类的视觉理解能力,通过算法对图像或视频中的目标进行识别、跟踪和语义理解。其核心是研究如何从二维图像反推三维世界的结构和规律。例如,自动驾驶中通过多摄像头融合实现道路场景理解,属于典型的CV任务。机器视觉(MV)聚焦于工业场景的自动化检测与控制,强调实时性和精准性。MV系统
- (视频演示)基于OpenCV的实时视频跟踪火焰识别软件V1.0源码及exe下载
是刃小木啦~
opencv人工智能计算机视觉
本文介绍了基于OpenCV的实时视频跟踪火焰识别软件,该软件通过先进的图像处理技术实现对实时视频中火焰的检测与跟踪,同时支持导入图片进行火焰识别。主要功能包括相机选择、实时跟踪和图片模式。软件适用于多种场合,用于保障人民生命财产安全。源码及exe文件可通过蓝奏云网盘下载。软件简介《基于OpenCV的实时视频跟踪火焰识别软件》是一款创新的计算机视觉应用软件,旨在通过先进的图像处理技术实现对实时视频中
- OpenCV 100道面试题及参考答案(7万字长文)
大模型大数据攻城狮
大厂面试大厂面经android面试计算机视觉opencv实时互动webrtc
OpenCV简介OpenCV(OpenSourceComputerVisionLibrary)是一个开源的计算机视觉库,它提供了丰富的函数和工具,用于处理图像和视频。OpenCV最初由英特尔公司开发,现在由一个开源社区维护和发展。主要功能和用途OpenCV的主要功能包括图像和视频处理、特征提取、目标检测、人脸识别、物体跟踪等。它可以用于各种领域,如机器人技术、医学影像、安全监控、自动驾驶等。在图像
- 使用OpenCV和Python将图像读取为RGB
UixnContext
opencvpython人工智能OpenCV
在计算机视觉和图像处理中,OpenCV是一个广泛使用的开源库,提供了许多功能强大的图像处理工具。其中一个常见的任务是将图像读取为RGB格式,以便进一步处理和分析。在本文中,我将向您展示如何使用OpenCV和Python来实现这个任务。首先,确保您已经安装了OpenCV库。您可以使用以下命令在Python中安装OpenCV:pipinstallopencv-python一旦安装完成,我们可以开始写代
- 人工智能开发趋势
光影少年
人工智能
人工智能开发趋势:未来技术的演进与创新引言人工智能(AI)正在以惊人的速度发展,并在各行各业中发挥越来越重要的作用。从自然语言处理到计算机视觉,从自动化决策到自主学习,AI的发展方向正变得更加智能化、自动化和人性化。本文将探讨当前AI开发的最新趋势,并展望未来的发展方向。1.生成式AI的崛起近年来,生成式AI(如ChatGPT、StableDiffusion、DALL·E)展现出强大的内容创作能力
- 大模型驱动的智能代码生成系统
AI天才研究院
DeepSeekR1&大数据AI人工智能大模型ChatGPTjavapythonjavascriptkotlingolang架构人工智能大厂程序员硅基计算碳基计算认知计算生物计算深度学习神经网络大数据AIGCAGILLM系统架构设计软件哲学Agent程序员实现财富自由
大模型驱动的智能代码生成系统关键词大模型智能代码生成自然语言处理计算机视觉系统设计与实现摘要本文深入探讨了基于大模型的智能代码生成系统的构建与实现。首先,我们分析了智能代码生成的背景与意义,随后介绍了大模型的基本原理及其在代码生成中的潜力。接着,我们详细阐述了智能代码生成系统的设计与实现过程,包括系统需求分析、架构设计、模型集成与优化等方面。随后,本文通过自然语言处理、计算机视觉和代码生成应用,展
- Python图片识别脚本:从零开始实现图像识别!
Python_trys
python开发语言编程Python入门Python基础Python识别Python学习
包含编程籽料、学习路线图、爬虫代码、安装包等!【点击领取!】图像识别是计算机视觉领域的一个重要应用,Python凭借其丰富的库和工具,成为了实现图像识别的首选语言之一。本文将带你从零开始,使用Python编写一个简单的图片识别脚本。我们将使用OpenCV和TensorFlow来实现这个功能。1.环境准备在开始之前,我们需要安装一些必要的Python库。你可以使用pip来安装这些库:pipinsta
- YOLOv12改进之A2(区域注意力)
清风AI
深度学习算法详解及代码复现深度学习机器学习计算机视觉人工智能算法
注意力回顾注意力机制作为深度学习领域的核心技术,已广泛应用于自然语言处理和计算机视觉等多个领域。在YOLOv12改进之A2中,注意力机制扮演着关键角色。已有研究成果包括:Transformer架构:引入了自注意力机制,有效捕捉输入序列中的长距离依赖关系。CBAM模块:提出了通道和空间注意力的结合,显著提升了图像分类和目标检测的性能。SENet:引入了通道注意力机制,通过自适应学习特征通道的重要性,
- 基于OpenCV的Java人脸识别系统设计与实现
小呀白呀兔
javaspringboot
基于OpenCV的Java人脸识别系统设计与实现1.引言随着计算机视觉技术的发展,人脸识别在安全监控、身份验证等领域得到了广泛应用。本文将详细介绍如何使用OpenCV库和Java语言构建一个简单的人脸识别系统。该系统能够从图像中检测人脸,并通过深度学习模型提取特征进行比对,最终输出相似度评分及置信度等级。2.环境搭建为了确保项目顺利运行,请按照以下步骤配置开发环境:安装JDK:确保已安装JavaD
- OpenCV实现在图像中绘制汉字
海上的风浪
opencv人工智能计算机视觉编程
在本文中,我将向您展示如何使用OpenCV库在图像中绘制汉字。OpenCV是一个广泛使用的计算机视觉库,它提供了许多强大的功能,包括图像处理和绘图。首先,我们需要安装OpenCV库。您可以通过在终端或命令提示符中运行以下命令来安装它:pipinstallopencv-python接下来,我们将使用Python编写代码来实现在图像中绘制汉字。请确保您已经安装了Python和OpenCV库。impor
- 【精华推荐】AI大模型学习必逛的十大顶级网站
大模型入门学习
人工智能学习大模型入门llama大模型教程大模型学习大模型
随着人工智能技术的快速发展,AI大模型(如GPT-3、BERT等)在自然语言处理、计算机视觉等领域取得了显著的成果。对于希望深入学习AI大模型的开发者和研究者来说,找到合适的学习资源至关重要。本文将为大家推荐十大必备网站,帮助你更好地理解和应用AI大模型。1.CourseraCoursera是一个在线学习平台,提供各类AI和机器学习课程,包括斯坦福大学的机器学习课程和深度学习专项课程。通过视频讲解
- Python从0到100(十八):面向对象编程应用
是Dream呀
python开发语言
前言:零基础学Python:Python从0到100最新最全教程。想做这件事情很久了,这次我更新了自己所写过的所有博客,汇集成了Python从0到100,共一百节课,帮助大家一个月时间里从零基础到学习Python基础语法、Python爬虫、Web开发、计算机视觉、机器学习、神经网络以及人工智能相关知识,成为学习学习和学业的先行者!欢迎大家订阅专栏:零基础学Python:Python从0到100最新
- YOLOv8改进主干RTMDet论文系列:高效涨点的单阶段目标检测器主干
IdfdFsharp
YOLO计算机视觉
近年来,目标检测技术在计算机视觉领域取得了显著的进展。为了提高目标检测器的性能和降低延时,研究人员不断提出新的方法和架构。本文介绍了一篇名为"YOLOv8改进主干RTMDet"的论文系列,该系列通过结合最新的RTMDet论文和采用CSPNeXt主干结构,实现了高性能、低延时的单阶段目标检测器主干。在本论文系列中,作者着重研究了目标检测器主干的改进方法。主干网络在目标检测中扮演着重要的角色,它负责提
- Python项目-基于深度学习的校园人脸识别考勤系统
天天进步2015
Python项目实战python
引言随着人工智能技术的快速发展,深度学习在计算机视觉领域的应用日益广泛。人脸识别作为其中的一个重要分支,已经在安防、金融、教育等多个领域展现出巨大的应用价值。本文将详细介绍如何使用Python和深度学习技术构建一个校园人脸识别考勤系统,该系统能够自动识别学生身份并记录考勤信息,大大提高了考勤效率,减轻了教师的工作负担。系统概述功能特点实时人脸检测与识别:能够从摄像头视频流中实时检测并识别人脸自动考
- 笔记-Python图片处理 (OpenCV-Python )
大白砌墙
笔记pythonopencv
OpenCV是一个基于BSD许可(开源)发行的跨平台计算机视觉库,可以运行在Linux、Windows、Android和MacOS操作系统上。它轻量级而且高效——由一系列C函数和少量C++类构成,同时提供了Python、Ruby、MATLAB等语言的接口,实现了图像处理和计算机视觉方面的很多通用算法。OpenCV-Python是OpenCV的Python的API接口,它拥有OpenCVC++API
- AI创业机遇:垂直领域无限可能
AGI大模型与大数据研究院
DeepSeekR1&大数据AI人工智能javapythonjavascriptkotlingolang架构人工智能
AI创业垂直领域机器学习深度学习自然语言处理计算机视觉无人驾驶1.背景介绍人工智能(AI)正在各行各业掀起一场革命,为创业者带来了前所未有的机遇。垂直领域,即特定行业或细分市场,正在成为AI创业的热门选择。本文将深入探讨AI在垂直领域的应用,并提供实用的指南,帮助读者把握AI创业机遇。2.核心概念与联系2.1AI与垂直领域AI在垂直领域的应用,需要理解AI与垂直领域的关系。AI可以为垂直领域提供智
- DeepSeek人工智能领域的创新先锋与变革力量
CodeJourney.
数据库算法人工智能
在科技飞速发展的时代,人工智能(AI)无疑是最具变革性的力量之一。DeepSeek作为人工智能领域的关键参与者,正以其独特的技术路径和创新理念,深刻影响着行业的发展格局。深入解读相关信息,能让我们更全面地认识DeepSeek在人工智能领域的重要贡献、技术优势、发展战略以及其带来的广泛影响。一、DeepSeek的技术突破与创新(一)核心技术成就DeepSeek在自然语言处理(NLP)和计算机视觉等人
- 深度学习数据集封装-----目标检测篇
科研小天才
深度学习目标检测人工智能
前言在上篇文章中,我们深入探讨了图像分类数据集的制作流程。图像分类作为计算机视觉领域的一个基础任务,通常被认为是最为简单直接的子任务之一。然而,当我们转向目标检测任务时,复杂度便显著提升,尤其是在标注框的处理环节。不同的模型架构往往对标注框的处理方式有着各自独特的要求。以YOLO系列为例,它自有一套成熟且高效的方法来应对这一挑战。鉴于篇幅有限,本文暂不深入展开YOLO的相关内容,感兴趣的读者可以查
- 预训练模型微调与下游任务迁移学习技术
AGI大模型与大数据研究院
计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
1.背景介绍机器学习技术近年来在计算机视觉、自然语言处理等领域取得了飞速发展,这离不开大规模预训练模型的贡献。预训练模型通过在海量数据上的自监督学习,学习到了丰富的特征表示,为下游任务提供了强大的初始化。而对预训练模型进行有效的微调,可以充分利用预训练知识,在有限数据上快速达到出色的性能。此外,迁移学习技术也为模型在不同任务间的知识复用提供了有效途径。本文将详细介绍预训练模型微调与下游任务迁移学习
- JAVA基础
灵静志远
位运算加载Date字符串池覆盖
一、类的初始化顺序
1 (静态变量,静态代码块)-->(变量,初始化块)--> 构造器
同一括号里的,根据它们在程序中的顺序来决定。上面所述是同一类中。如果是继承的情况,那就在父类到子类交替初始化。
二、String
1 String a = "abc";
JAVA虚拟机首先在字符串池中查找是否已经存在了值为"abc"的对象,根
- keepalived实现redis主从高可用
bylijinnan
redis
方案说明
两台机器(称为A和B),以统一的VIP对外提供服务
1.正常情况下,A和B都启动,B会把A的数据同步过来(B is slave of A)
2.当A挂了后,VIP漂移到B;B的keepalived 通知redis 执行:slaveof no one,由B提供服务
3.当A起来后,VIP不切换,仍在B上面;而A的keepalived 通知redis 执行slaveof B,开始
- java文件操作大全
0624chenhong
java
最近在博客园看到一篇比较全面的文件操作文章,转过来留着。
http://www.cnblogs.com/zhuocheng/archive/2011/12/12/2285290.html
转自http://blog.sina.com.cn/s/blog_4a9f789a0100ik3p.html
一.获得控制台用户输入的信息
&nbs
- android学习任务
不懂事的小屁孩
工作
任务
完成情况 搞清楚带箭头的pupupwindows和不带的使用 已完成 熟练使用pupupwindows和alertdialog,并搞清楚两者的区别 已完成 熟练使用android的线程handler,并敲示例代码 进行中 了解游戏2048的流程,并完成其代码工作 进行中-差几个actionbar 研究一下android的动画效果,写一个实例 已完成 复习fragem
- zoom.js
换个号韩国红果果
oom
它的基于bootstrap 的
https://raw.github.com/twbs/bootstrap/master/js/transition.js transition.js模块引用顺序
<link rel="stylesheet" href="style/zoom.css">
<script src=&q
- 详解Oracle云操作系统Solaris 11.2
蓝儿唯美
Solaris
当Oracle发布Solaris 11时,它将自己的操作系统称为第一个面向云的操作系统。Oracle在发布Solaris 11.2时继续它以云为中心的基调。但是,这些说法没有告诉我们为什么Solaris是配得上云的。幸好,我们不需要等太久。Solaris11.2有4个重要的技术可以在一个有效的云实现中发挥重要作用:OpenStack、内核域、统一存档(UA)和弹性虚拟交换(EVS)。
- spring学习——springmvc(一)
a-john
springMVC
Spring MVC基于模型-视图-控制器(Model-View-Controller,MVC)实现,能够帮助我们构建像Spring框架那样灵活和松耦合的Web应用程序。
1,跟踪Spring MVC的请求
请求的第一站是Spring的DispatcherServlet。与大多数基于Java的Web框架一样,Spring MVC所有的请求都会通过一个前端控制器Servlet。前
- hdu4342 History repeat itself-------多校联合五
aijuans
数论
水题就不多说什么了。
#include<iostream>#include<cstdlib>#include<stdio.h>#define ll __int64using namespace std;int main(){ int t; ll n; scanf("%d",&t); while(t--)
- EJB和javabean的区别
asia007
beanejb
EJB不是一般的JavaBean,EJB是企业级JavaBean,EJB一共分为3种,实体Bean,消息Bean,会话Bean,书写EJB是需要遵循一定的规范的,具体规范你可以参考相关的资料.另外,要运行EJB,你需要相应的EJB容器,比如Weblogic,Jboss等,而JavaBean不需要,只需要安装Tomcat就可以了
1.EJB用于服务端应用开发, 而JavaBeans
- Struts的action和Result总结
百合不是茶
strutsAction配置Result配置
一:Action的配置详解:
下面是一个Struts中一个空的Struts.xml的配置文件
<?xml version="1.0" encoding="UTF-8" ?>
<!DOCTYPE struts PUBLIC
&quo
- 如何带好自已的团队
bijian1013
项目管理团队管理团队
在网上看到博客"
怎么才能让团队成员好好干活"的评论,觉得写的比较好。 原文如下: 我做团队管理有几年了吧,我和你分享一下我认为带好团队的几点:
1.诚信
对团队内成员,无论是技术研究、交流、问题探讨,要尽可能的保持一种诚信的态度,用心去做好,你的团队会感觉得到。 2.努力提
- Java代码混淆工具
sunjing
ProGuard
Open Source Obfuscators
ProGuard
http://java-source.net/open-source/obfuscators/proguardProGuard is a free Java class file shrinker and obfuscator. It can detect and remove unused classes, fields, m
- 【Redis三】基于Redis sentinel的自动failover主从复制
bit1129
redis
在第二篇中使用2.8.17搭建了主从复制,但是它存在Master单点问题,为了解决这个问题,Redis从2.6开始引入sentinel,用于监控和管理Redis的主从复制环境,进行自动failover,即Master挂了后,sentinel自动从从服务器选出一个Master使主从复制集群仍然可以工作,如果Master醒来再次加入集群,只能以从服务器的形式工作。
什么是Sentine
- 使用代理实现Hibernate Dao层自动事务
白糖_
DAOspringAOP框架Hibernate
都说spring利用AOP实现自动事务处理机制非常好,但在只有hibernate这个框架情况下,我们开启session、管理事务就往往很麻烦。
public void save(Object obj){
Session session = this.getSession();
Transaction tran = session.beginTransaction();
try
- maven3实战读书笔记
braveCS
maven3
Maven简介
是什么?
Is a software project management and comprehension tool.项目管理工具
是基于POM概念(工程对象模型)
[设计重复、编码重复、文档重复、构建重复,maven最大化消除了构建的重复]
[与XP:简单、交流与反馈;测试驱动开发、十分钟构建、持续集成、富有信息的工作区]
功能:
- 编程之美-子数组的最大乘积
bylijinnan
编程之美
public class MaxProduct {
/**
* 编程之美 子数组的最大乘积
* 题目: 给定一个长度为N的整数数组,只允许使用乘法,不能用除法,计算任意N-1个数的组合中乘积中最大的一组,并写出算法的时间复杂度。
* 以下程序对应书上两种方法,求得“乘积中最大的一组”的乘积——都是有溢出的可能的。
* 但按题目的意思,是要求得这个子数组,而不
- 读书笔记-2
chengxuyuancsdn
读书笔记
1、反射
2、oracle年-月-日 时-分-秒
3、oracle创建有参、无参函数
4、oracle行转列
5、Struts2拦截器
6、Filter过滤器(web.xml)
1、反射
(1)检查类的结构
在java.lang.reflect包里有3个类Field,Method,Constructor分别用于描述类的域、方法和构造器。
2、oracle年月日时分秒
s
- [求学与房地产]慎重选择IT培训学校
comsci
it
关于培训学校的教学和教师的问题,我们就不讨论了,我主要关心的是这个问题
培训学校的教学楼和宿舍的环境和稳定性问题
我们大家都知道,房子是一个比较昂贵的东西,特别是那种能够当教室的房子...
&nb
- RMAN配置中通道(CHANNEL)相关参数 PARALLELISM 、FILESPERSET的关系
daizj
oraclermanfilespersetPARALLELISM
RMAN配置中通道(CHANNEL)相关参数 PARALLELISM 、FILESPERSET的关系 转
PARALLELISM ---
我们还可以通过parallelism参数来指定同时"自动"创建多少个通道:
RMAN > configure device type disk parallelism 3 ;
表示启动三个通道,可以加快备份恢复的速度。
- 简单排序:冒泡排序
dieslrae
冒泡排序
public void bubbleSort(int[] array){
for(int i=1;i<array.length;i++){
for(int k=0;k<array.length-i;k++){
if(array[k] > array[k+1]){
- 初二上学期难记单词三
dcj3sjt126com
sciet
concert 音乐会
tonight 今晚
famous 有名的;著名的
song 歌曲
thousand 千
accident 事故;灾难
careless 粗心的,大意的
break 折断;断裂;破碎
heart 心(脏)
happen 偶尔发生,碰巧
tourist 旅游者;观光者
science (自然)科学
marry 结婚
subject 题目;
- I.安装Memcahce 1. 安装依赖包libevent Memcache需要安装libevent,所以安装前可能需要执行 Shell代码 收藏代码
dcj3sjt126com
redis
wget http://download.redis.io/redis-stable.tar.gz
tar xvzf redis-stable.tar.gz
cd redis-stable
make
前面3步应该没有问题,主要的问题是执行make的时候,出现了异常。
异常一:
make[2]: cc: Command not found
异常原因:没有安装g
- 并发容器
shuizhaosi888
并发容器
通过并发容器来改善同步容器的性能,同步容器将所有对容器状态的访问都串行化,来实现线程安全,这种方式严重降低并发性,当多个线程访问时,吞吐量严重降低。
并发容器ConcurrentHashMap
替代同步基于散列的Map,通过Lock控制。
&nb
- Spring Security(12)——Remember-Me功能
234390216
Spring SecurityRemember Me记住我
Remember-Me功能
目录
1.1 概述
1.2 基于简单加密token的方法
1.3 基于持久化token的方法
1.4 Remember-Me相关接口和实现
- 位运算
焦志广
位运算
一、位运算符C语言提供了六种位运算符:
& 按位与
| 按位或
^ 按位异或
~ 取反
<< 左移
>> 右移
1. 按位与运算 按位与运算符"&"是双目运算符。其功能是参与运算的两数各对应的二进位相与。只有对应的两个二进位均为1时,结果位才为1 ,否则为0。参与运算的数以补码方式出现。
例如:9&am
- nodejs 数据库连接 mongodb mysql
liguangsong
mongodbmysqlnode数据库连接
1.mysql 连接
package.json中dependencies加入
"mysql":"~2.7.0"
执行 npm install
在config 下创建文件 database.js
- java动态编译
olive6615
javaHotSpotjvm动态编译
在HotSpot虚拟机中,有两个技术是至关重要的,即动态编译(Dynamic compilation)和Profiling。
HotSpot是如何动态编译Javad的bytecode呢?Java bytecode是以解释方式被load到虚拟机的。HotSpot里有一个运行监视器,即Profile Monitor,专门监视
- Storm0.9.5的集群部署配置优化
roadrunners
优化storm.yaml
nimbus结点配置(storm.yaml)信息:
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional inf
- 101个MySQL 的调节和优化的提示
tomcat_oracle
mysql
1. 拥有足够的物理内存来把整个InnoDB文件加载到内存中——在内存中访问文件时的速度要比在硬盘中访问时快的多。 2. 不惜一切代价避免使用Swap交换分区 – 交换时是从硬盘读取的,它的速度很慢。 3. 使用电池供电的RAM(注:RAM即随机存储器)。 4. 使用高级的RAID(注:Redundant Arrays of Inexpensive Disks,即磁盘阵列
- zoj 3829 Known Notation(贪心)
阿尔萨斯
ZOJ
题目链接:zoj 3829 Known Notation
题目大意:给定一个不完整的后缀表达式,要求有2种不同操作,用尽量少的操作使得表达式完整。
解题思路:贪心,数字的个数要要保证比∗的个数多1,不够的话优先补在开头是最优的。然后遍历一遍字符串,碰到数字+1,碰到∗-1,保证数字的个数大于等1,如果不够减的话,可以和最后面的一个数字交换位置(用栈维护十分方便),因为添加和交换代价都是1