- Prompt:开启与AI高效对话的钥匙
解密Prompt:开启与AI高效对话的钥匙一、什么是Prompt?——AI的“使用说明书”想象一下,你正在指挥一位无所不知但毫无主动性的“实习生”——人工智能(AI)。你不能指望它“心领神会”,你必须给出清晰、具体的指令,它才能准确地完成你想要的任务。这个指令,就是Prompt(提示或提示词)。简单来说,Prompt是你向AI(如大型语言模型LLM)发出的文本或问题,用以引导它生成特定的、高质量的
- AI人工智能中Actor - Critic算法的深入解析与应用场景
AI智能探索者
AIAgent智能体开发实战人工智能算法ai
AI人工智能中Actor-Critic算法的深入解析与应用场景关键词:Actor-Critic、强化学习、策略梯度、价值函数、深度强化学习、马尔可夫决策过程、A2C/A3C摘要:本文将深入解析Actor-Critic算法的核心原理,从基础概念到数学推导,再到实际应用场景。我们将通过生动的比喻解释这一强化学习中的重要算法,展示其Python实现代码,并探讨它在游戏AI、机器人控制等领域的应用。最后,
- AI人工智能领域多模态大模型的发展历程回顾
AI智能探索者
AIAgent智能体开发实战人工智能ai
AI人工智能领域多模态大模型的发展历程回顾关键词:AI人工智能、多模态大模型、发展历程、技术演变、应用场景摘要:本文旨在全面回顾AI人工智能领域多模态大模型的发展历程。通过对不同阶段核心概念、算法原理、数学模型等方面的深入剖析,结合实际项目案例,探讨其在各个领域的应用场景。同时,推荐相关的学习资源、开发工具和重要论文著作,最后总结多模态大模型的未来发展趋势与挑战,并对常见问题进行解答。1.背景介绍
- AI人工智能领域Actor - Critic算法的可视化分析
AI智能探索者
AIAgent智能体开发实战人工智能算法ai
AI人工智能领域Actor-Critic算法的可视化分析关键词:Actor-Critic算法、强化学习、策略梯度、价值函数、可视化分析、神经网络、马尔可夫决策过程摘要:本文深入浅出地讲解Actor-Critic算法的核心原理,通过生活化的比喻和可视化分析,帮助读者理解这一强化学习中的重要算法。我们将从基础概念入手,逐步剖析算法架构,并通过Python代码实现和可视化演示,展示算法在实际问题中的应用
- 如何用深度学习实现图像风格迁移
最近研学过程中发现了一个巨牛的人工智能学习网站,通俗易懂,风趣幽默,忍不住分享一下给大家。点击链接跳转到网站人工智能及编程语言学习教程。读者们可以通过里面的文章详细了解一下人工智能及其编程等教程和学习方法。下面开始对正文内容的介绍。前言图像风格迁移是人工智能领域中一个非常有趣且富有创意的应用。它能够让一张普通的照片瞬间变成梵高笔下的《星月夜》风格,或者像莫奈的《睡莲》一样充满艺术感。这种技术不仅在
- “闭门造车”之多模态思路浅谈:自回归学习与生成
PaperWeekly
回归学习数据挖掘人工智能机器学习
©PaperWeekly原创·作者|苏剑林单位|科学空间研究方向|NLP、神经网络这篇文章我们继续来闭门造车,分享一下笔者最近对多模态学习的一些新理解。在前文《“闭门造车”之多模态思路浅谈:无损》中,我们强调了无损输入对于理想的多模型模态的重要性。如果这个观点成立,那么当前基于VQ-VAE、VQ-GAN等将图像离散化的主流思路就存在能力瓶颈,因为只需要简单计算一下信息熵就可以表明离散化必然会有严重
- AI人工智能领域TensorFlow的模型训练策略
AIGC应用创新大全
人工智能tensorflowpythonai
AI人工智能领域TensorFlow的模型训练策略关键词:TensorFlow、模型训练、深度学习、神经网络、优化策略、分布式训练、迁移学习摘要:本文将深入探讨TensorFlow框架下的模型训练策略,从基础概念到高级技巧,全面解析如何高效训练深度学习模型。我们将从数据准备、模型构建、训练优化到部署应用,一步步揭示TensorFlow模型训练的核心技术,并通过实际代码示例展示最佳实践。背景介绍目的
- Actor - Critic:AI人工智能领域的新宠儿
Actor-Critic:AI人工智能领域的新宠儿关键词:强化学习、Actor-Critic、策略梯度、价值函数、深度强化学习、A2C、A3C摘要:Actor-Critic是强化学习领域的一种重要算法框架,它结合了策略梯度方法和价值函数方法的优点,成为近年来人工智能领域的热门研究方向。本文将用通俗易懂的方式介绍Actor-Critic的核心概念、工作原理、实现方法以及实际应用,帮助读者理解这一强大
- 探索AI人工智能中遗传算法的进化奥秘
AI学长带你学AI
人工智能ai
探索AI人工智能中遗传算法的进化奥秘关键词:遗传算法、自然选择、基因编码、适应度函数、群体进化、交叉变异、优化问题摘要:本文将用生物进化视角解读人工智能中的遗传算法原理。通过达尔文进化论的生活化比喻,结合Python代码实例演示如何模拟基因遗传、自然选择等过程,揭示遗传算法在路径规划、参数优化等场景的应用奥秘。最后探讨遗传算法的局限性与未来发展方向。背景介绍目的和范围本文旨在用通俗易懂的方式解析遗
- 深度剖析AI人工智能领域多模态大模型
AI学长带你学AI
AI人工智能与大数据应用开发AI应用开发高级指南人工智能ai
深度剖析AI人工智能领域多模态大模型关键词:AI人工智能、多模态大模型、模型架构、算法原理、应用场景摘要:本文旨在对AI人工智能领域的多模态大模型进行深度剖析。首先介绍多模态大模型的背景知识,包括目的、预期读者等。接着阐述核心概念,分析其架构和原理,并给出相应的流程图。通过Python代码详细讲解核心算法原理和具体操作步骤,同时用数学模型和公式进一步阐释。在项目实战部分,给出实际案例及详细代码解读
- Open AI在AI人工智能领域的创新之路
AI学长带你学AI
AI人工智能与大数据应用开发AI应用开发高级指南人工智能ai
OpenAI在AI人工智能领域的创新之路关键词:OpenAI、人工智能、创新之路、技术突破、应用场景摘要:本文深入探讨了OpenAI在AI人工智能领域的创新之路。首先介绍了OpenAI的背景信息,包括其成立目的、发展历程等。接着详细阐述了OpenAI的核心概念,如强化学习、生成式对抗网络等,并通过示意图和流程图展示其原理和架构。然后讲解了相关核心算法原理,结合Python代码进行具体说明。同时,给
- 探索AI人工智能领域Actor - Critic的无限潜力
探索AI人工智能领域Actor-Critic的无限潜力关键词:AI人工智能、Actor-Critic、强化学习、策略网络、价值网络摘要:本文将深入探索AI人工智能领域中Actor-Critic方法的无限潜力。我们会先介绍其背景知识,接着用通俗易懂的方式解释核心概念,包括Actor和Critic的含义及它们之间的关系,然后阐述其核心算法原理和具体操作步骤,还会给出数学模型和公式并举例说明。通过项目实
- AI人工智能领域多模态大模型的技术瓶颈与解决方案
AI学长带你学AI
人工智能ai
AI人工智能领域多模态大模型的技术瓶颈与解决方案关键词:多模态大模型、技术瓶颈、跨模态对齐、计算效率、数据稀缺、模型泛化、解决方案摘要:本文深入探讨了AI人工智能领域多模态大模型发展过程中面临的主要技术瓶颈,包括跨模态对齐困难、计算资源消耗巨大、高质量多模态数据稀缺、模型泛化能力不足等问题。针对这些挑战,我们提出了系统性的解决方案,涵盖算法优化、架构创新、数据增强等多个维度。文章通过理论分析、数学
- 【杂谈】-人工智能:从无序部署到可问责治理的转型之路
人工智能:从无序部署到可问责治理的转型之路文章目录人工智能:从无序部署到可问责治理的转型之路1、失控的人工智能与“漂移”现象的潜在危机2、穿透迷雾:探寻人工智能治理的真谛3、民主化进程中的治理觉醒4、迈向未来:构建可问责的人工智能生态体系5、抉择时刻:关乎人工智能发展走向的关键权衡人工智能已然步入一个关键的转折阶段。当下,众多企业竞相投身于各类人工智能系统的部署浪潮之中,从功能多样的生成式人工智能
- 自动字幕生成器:Auto-Subtitle — 技术解析与应用指南
房耿园Hartley
自动字幕生成器:Auto-Subtitle—技术解析与应用指南在视频内容日益丰富的今天,自动字幕生成工具变得越来越重要,尤其是对于听障人士、非母语者和在嘈杂环境下观看视频的人来说。Auto-Subtitle是一个开源项目,它利用先进的自然语言处理(NLP)技术为你的视频自动生成准确的字幕。本文将深入探讨这个项目的原理、功能、应用场景及特点,以期吸引更多开发者和用户关注并使用。项目简介Auto-Su
- 从“直觉抢答”到“深度思考”:大模型的“慢思考”革命,思维链、树、图如何让AI越来越像人?
陈敬雷-充电了么-CEO兼CTO
《GPT多模态大模型与AIAgent智能体》新书内容人工智能chatgptAIGC神经网络python大模型思维链
注:此文章内容均节选自充电了么创始人,CEO兼CTO陈敬雷老师的新书《GPT多模态大模型与AIAgent智能体》(跟我一起学人工智能)【陈敬雷编著】【清华大学出版社】GPT多模态大模型与AIAgent智能体书籍本章配套视频课程【陈敬雷】文章目录GPT多模态大模型与AIAgent智能体系列十六从“直觉抢答”到“深度思考”:大模型的“慢思考”革命,思维链、树、图如何让AI越来越像人?引言:当AI从“快
- 基于蜣螂算法优化多头注意力机制的卷积神经网络结合双向长短记忆神经网络实现温度预测DBO-CNN-biLSTM-Multihead-Attention附matlab代码
matlab科研助手
神经网络算法cnn
✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。个人主页:Matlab科研工作室个人信条:格物致知。更多Matlab完整代码及仿真定制内容点击智能优化算法神经网络预测雷达通信无线传感器电力系统信号处理图像处理路径规划元胞自动机无人机物理应用机器学习内容介绍温度预测在气象学、农业、能源等领域具有重要的应用价值。随着大数据和人工智能技术的快速发
- 股票基金量化开源平台对比
Mr.小海
开源开源金融
股票基金量化开源平台对比分析报告引言研究背景与意义在金融科技快速发展的背景下,量化交易已成为现代金融市场中投资者追求高效与精准交易的核心工具。通过程序化方式,投资者能够迅速处理海量市场数据,制定并执行复杂交易策略,其高效性、低情绪干扰及策略多样性等优势显著[1]。特别是随着人工智能技术的深化,2025年基于深度学习与机器学习的开源量化工具持续涌现,推动行业向数据驱动转型——量化交易将决策逻辑从经验
- 开源基金/股票量化平台调研报告
Mr.小海
金融
开源基金/股票量化平台调研报告引言调研背景与目的近年来,随着人工智能技术的持续深化,量化交易领域迎来了深刻变革。2025年,基于深度学习和机器学习的开源工具不断涌现,不仅在技术层面实现突破,更在实际应用中展现出强大竞争优势,推动行业创新与升级[1].作为融合数学、统计与计算机技术的科技驱动型金融策略,量化交易通过自动化与数据驱动方法提升投资决策效率与准确性,已成为金融机构与投资者追求超额收益的重要
- 同步发电机与逆变型电源故障电流特性对比实验研究
神经网络15044
MATLAB专栏仿真模型生成对抗网络学习人工智能开发语言matlab
同步发电机与逆变型电源故障电流特性对比实验研究前些天发现了一个巨牛的人工智能学习网站,通俗易懂,风趣幽默,忍不住分享一下给大家。点击跳转到网站。1.研究背景与意义随着可再生能源在电力系统中的渗透率不断提高,逆变型电源(Inverter-BasedResources,IBR)在电网中的比重日益增加。与传统同步发电机相比,IBR的故障响应特性存在显著差异,这对电力系统的保护设计和运行控制提出了新的挑战
- AIGC革命:基于魔搭社区的LLM应用开发实战——从模型微调到系统部署
Liudef06小白
AIGC人工智能特殊专栏人工智能魔搭AIGCLLM
AIGC革命:基于魔搭社区的LLM应用开发实战——从模型微调到系统部署1.AIGC技术演进与魔搭社区生态解析人工智能生成内容(AIGC)正在重塑内容创作、软件开发和人机交互的边界。从OpenAI的GPT系列到StabilityAI的StableDiffusion,生成式AI技术正以惊人的速度发展。在这场技术革命中,魔搭社区(ModelScope)作为中国领先的AI模型开源平台,正成为开发者探索AI
- 人工智能界的“黑话“大揭秘:AI新词汇速成指南
人工智能界的"黑话"大揭秘:AI新词汇速成指南你是否曾在科技大佬们讨论AI时一头雾水?听到RAG、Agent、PromptEngineering时以为他们在说天书?别担心,今天我们就来一场AI术语的"通俗化运动",让你轻松混入AI圈子,秒变内行人!LLM(大型语言模型):AI界的"大胃王"LLM是吞噬了互联网大部分文字的"数据饕餮"。特点:训练数据以TB(万亿字节)计算参数动辄上千亿计算能力堪比小
- 解密Claude系列:从原理到实践的全方位解析
软考和人工智能学堂
强化学习人工智能Claude快速入门Claude
引言:Claude系列模型的崛起在人工智能领域,大型语言模型(LLM)的发展日新月异。OpenAI的GPT系列和Anthropic的Claude系列无疑是这一领域的双子星。Claude系列模型以其独特的"ConstitutionalAI"理念和强大的对话能力,正在重塑人机交互的未来。本文将深入探讨Claude系列的技术原理、架构特点,并通过实践代码展示其强大能力。Claude系列的技术演进1.Cl
- 元宇宙:中国数字经济的新赛道——基于游戏生态、AI与区块链的创新实践
boyedu
元宇宙域名游戏人工智能区块链元宇宙
引言:数字经济时代的“新大陆”在数字技术的浪潮中,元宇宙正从科幻概念跃升为全球科技竞争的焦点。中国,作为全球数字经济规模第二大的经济体,正以独特的路径探索元宇宙的发展——以游戏生态为起点,融合人工智能(AI)与区块链技术,构建一个虚实融合的数字新世界。这一路径不仅契合中国在5G、AI、区块链等领域的技术积累,更与“数字经济”“新质生产力”等国家战略形成共振。本文将从技术融合、经济价值、社会影响三个
- 略说NLP引入公理模型的可行性
金井PRATHAMA
知识图谱与NLP自然语言处理人工智能知识图谱
在自然语言处理(NLP)的深层语义分析中,公理化体系的引入具有理论可行性,但其实际应用仍面临挑战。以下从公理模型的设计思路、关键技术要点及注意事项三个方面展开分析,结合搜索结果的多个相关技术点进行综合说明:一、公理模型在深层语义分析中的设计思路公理的定义与语义形式化公理模型需以形式化逻辑为基础,定义语义分析中的原始概念(如谓词、实体、关系)和推理规则。例如:原始概念:将语义角色(如施事者、受事者)
- NLP中情感分析如何结合知识图谱在跨文化领域提升观念分析和价值判断的准确性?
情感分析结合知识图谱,能够显著提升观念分析和价值判断的准确性。这一融合的核心在于利用知识图谱的结构化语义网络,为情感分析提供深层语境、实体关联和领域知识支撑。以下是具体机制和应用场景的分析:一、知识图谱如何提升情感分析的语义理解1.解决歧义与上下文依赖问题:情感词(如“冷”)在不同语境中含义不同(“服务态度冷”表负面,“冷静分析”表中性)。方案:知识图谱通过实体链接识别文本中的对象(如“服务态度”
- 智能体架构设计的五大核心原则:构建下一代AI系统的工程基石
一休哥助手
人工智能
引言:智能体架构的范式演进人工智能领域正经历从孤立模型向自主智能体的范式转变。2025年,全球AI智能体市场规模突破200亿美元,在金融、医疗、制造等领域的渗透率超40%。然而,智能体开发仍面临协作效率低(多智能体任务重叠率达30%)、安全风险高(工具调用错误率18%)和系统僵化(需求变更迭代周期超2周)三大痛点。本文基于产业实践提炼五大核心设计原则,为构建下一代智能体系统提供架构指南。传统LLM
- 昇思MindSpore创新训练营·长三角站开始报名!
昇思MindSpore
人工智能自然语言处理深度学习
一、介绍为充分发挥长三角研究型大学联盟教学实践基地共建共享功能,加强华东高校优秀青年学子的交流与互动,提供学生与产业界接触的机会,上海交通大学与华为技术有限公司共同发起,面向长三角研究型大学学生开设昇思MindSpore创新训练营。本次训练营以实践项目和业界需求为牵引,以学生实践为主线,让学生在实践的过程中学习和实践人工智能相关知识,掌握相关技术和工具,紧跟业界最新趋势,加深对人工智能行业的认识,
- OPPO未来科技大会,科技感满满!你最爱哪些黑科技呢?
冬天不冷了
#OPPO未来科技大会#OPPO携手IHSMarkit发布《智能互融:借助5G、人工智能和云技术,释放机遇》白皮书,表明人工智能、云技术和边缘设备、互联和物联网的协同努力,将为企业和消费者带来价值。看了一下早上的,是说明年绿厂要发不少好玩的产品,比如智能手表AR眼镜之类的,有些可能跟Reno3一块发,对外是说构建生态万物互联,其实就是多卖几样多赚钱,然后用这钱砸了搞技术赚更大的钱,毕竟现场说了未来
- SBERT、CoSENT和BETR以及transformers的区别和联系
panshengnan
NLPnlptransformer
SBERT、CoSENT、BETR和Transformers的区别和联系这几个模型(SBERT、CoSENT、BETR)和框架(Transformers)都是围绕自然语言处理(NLP)的句子嵌入和语义理解任务展开的。它们的联系主要在于基于Transformer架构,并针对特定任务做了优化;区别则在于目标任务、优化策略、训练方法和适用场景等方面。1.联系基于Transformer架构:它们的核心编码
- 插入表主键冲突做更新
a-john
有以下场景:
用户下了一个订单,订单内的内容较多,且来自多表,首次下单的时候,内容可能会不全(部分内容不是必须,出现有些表根本就没有没有该订单的值)。在以后更改订单时,有些内容会更改,有些内容会新增。
问题:
如果在sql语句中执行update操作,在没有数据的表中会出错。如果在逻辑代码中先做查询,查询结果有做更新,没有做插入,这样会将代码复杂化。
解决:
mysql中提供了一个sql语
- Android xml资源文件中@、@android:type、@*、?、@+含义和区别
Cb123456
@+@?@*
一.@代表引用资源
1.引用自定义资源。格式:@[package:]type/name
android:text="@string/hello"
2.引用系统资源。格式:@android:type/name
android:textColor="@android:color/opaque_red"
- 数据结构的基本介绍
天子之骄
数据结构散列表树、图线性结构价格标签
数据结构的基本介绍
数据结构就是数据的组织形式,用一种提前设计好的框架去存取数据,以便更方便,高效的对数据进行增删查改。正确选择合适的数据结构,对软件程序的高效执行的影响作用不亚于算法的设计。此外,在计算机系统中数据结构的作用也是非同小可。例如常常在编程语言中听到的栈,堆等,就是经典的数据结构。
经典的数据结构大致如下:
一:线性数据结构
(1):列表
a
- 通过二维码开放平台的API快速生成二维码
一炮送你回车库
api
现在很多网站都有通过扫二维码用手机连接的功能,联图网(http://www.liantu.com/pingtai/)的二维码开放平台开放了一个生成二维码图片的Api,挺方便使用的。闲着无聊,写了个前台快速生成二维码的方法。
html代码如下:(二维码将生成在这div下)
? 1
&nbs
- ImageIO读取一张图片改变大小
3213213333332132
javaIOimageBufferedImage
package com.demo;
import java.awt.image.BufferedImage;
import java.io.File;
import java.io.IOException;
import javax.imageio.ImageIO;
/**
* @Description 读取一张图片改变大小
* @author FuJianyon
- myeclipse集成svn(一针见血)
7454103
eclipseSVNMyEclipse
&n
- 装箱与拆箱----autoboxing和unboxing
darkranger
J2SE
4.2 自动装箱和拆箱
基本数据(Primitive)类型的自动装箱(autoboxing)、拆箱(unboxing)是自J2SE 5.0开始提供的功能。虽然为您打包基本数据类型提供了方便,但提供方便的同时表示隐藏了细节,建议在能够区分基本数据类型与对象的差别时再使用。
4.2.1 autoboxing和unboxing
在Java中,所有要处理的东西几乎都是对象(Object)
- ajax传统的方式制作ajax
aijuans
Ajax
//这是前台的代码
<%@ page language="java" import="java.util.*" pageEncoding="UTF-8"%> <% String path = request.getContextPath(); String basePath = request.getScheme()+
- 只用jre的eclipse是怎么编译java源文件的?
avords
javaeclipsejdktomcat
eclipse只需要jre就可以运行开发java程序了,也能自动 编译java源代码,但是jre不是java的运行环境么,难道jre中也带有编译工具? 还是eclipse自己实现的?谁能给解释一下呢问题补充:假设系统中没有安装jdk or jre,只在eclipse的目录中有一个jre,那么eclipse会采用该jre,问题是eclipse照样可以编译java源文件,为什么呢?
&nb
- 前端模块化
bee1314
模块化
背景: 前端JavaScript模块化,其实已经不是什么新鲜事了。但是很多的项目还没有真正的使用起来,还处于刀耕火种的野蛮生长阶段。 JavaScript一直缺乏有效的包管理机制,造成了大量的全局变量,大量的方法冲突。我们多么渴望有天能像Java(import),Python (import),Ruby(require)那样写代码。在没有包管理机制的年代,我们是怎么避免所
- 处理百万级以上的数据处理
bijian1013
oraclesql数据库大数据查询
一.处理百万级以上的数据提高查询速度的方法: 1.应尽量避免在 where 子句中使用!=或<>操作符,否则将引擎放弃使用索引而进行全表扫描。
2.对查询进行优化,应尽量避免全表扫描,首先应考虑在 where 及 o
- mac 卸载 java 1.7 或更高版本
征客丶
javaOS
卸载 java 1.7 或更高
sudo rm -rf /Library/Internet\ Plug-Ins/JavaAppletPlugin.plugin
成功执行此命令后,还可以执行 java 与 javac 命令
sudo rm -rf /Library/PreferencePanes/JavaControlPanel.prefPane
成功执行此命令后,还可以执行 java
- 【Spark六十一】Spark Streaming结合Flume、Kafka进行日志分析
bit1129
Stream
第一步,Flume和Kakfa对接,Flume抓取日志,写到Kafka中
第二部,Spark Streaming读取Kafka中的数据,进行实时分析
本文首先使用Kakfa自带的消息处理(脚本)来获取消息,走通Flume和Kafka的对接 1. Flume配置
1. 下载Flume和Kafka集成的插件,下载地址:https://github.com/beyondj2ee/f
- Erlang vs TNSDL
bookjovi
erlang
TNSDL是Nokia内部用于开发电信交换软件的私有语言,是在SDL语言的基础上加以修改而成,TNSDL需翻译成C语言得以编译执行,TNSDL语言中实现了异步并行的特点,当然要完整实现异步并行还需要运行时动态库的支持,异步并行类似于Erlang的process(轻量级进程),TNSDL中则称之为hand,Erlang是基于vm(beam)开发,
- 非常希望有一个预防疲劳的java软件, 预防过劳死和眼睛疲劳,大家一起努力搞一个
ljy325
企业应用
非常希望有一个预防疲劳的java软件,我看新闻和网站,国防科技大学的科学家累死了,太疲劳,老是加班,不休息,经常吃药,吃药根本就没用,根本原因是疲劳过度。我以前做java,那会公司垃圾,老想赶快学习到东西跳槽离开,搞得超负荷,不明理。深圳做软件开发经常累死人,总有不明理的人,有个软件提醒限制很好,可以挽救很多人的生命。
相关新闻:
(1)IT行业成五大疾病重灾区:过劳死平均37.9岁
- 读《研磨设计模式》-代码笔记-原型模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
/**
* Effective Java 建议使用copy constructor or copy factory来代替clone()方法:
* 1.public Product copy(Product p){}
* 2.publi
- 配置管理---svn工具之权限配置
chenyu19891124
SVN
今天花了大半天的功夫,终于弄懂svn权限配置。下面是今天收获的战绩。
安装完svn后就是在svn中建立版本库,比如我本地的是版本库路径是C:\Repositories\pepos。pepos是我的版本库。在pepos的目录结构
pepos
component
webapps
在conf里面的auth里赋予的权限配置为
[groups]
- 浅谈程序员的数学修养
comsci
设计模式编程算法面试招聘
浅谈程序员的数学修养
- 批量执行 bulk collect与forall用法
daizj
oraclesqlbulk collectforall
BULK COLLECT 子句会批量检索结果,即一次性将结果集绑定到一个集合变量中,并从SQL引擎发送到PL/SQL引擎。通常可以在SELECT INTO、
FETCH INTO以及RETURNING INTO子句中使用BULK COLLECT。本文将逐一描述BULK COLLECT在这几种情形下的用法。
有关FORALL语句的用法请参考:批量SQL之 F
- Linux下使用rsync最快速删除海量文件的方法
dongwei_6688
OS
1、先安装rsync:yum install rsync
2、建立一个空的文件夹:mkdir /tmp/test
3、用rsync删除目标目录:rsync --delete-before -a -H -v --progress --stats /tmp/test/ log/这样我们要删除的log目录就会被清空了,删除的速度会非常快。rsync实际上用的是替换原理,处理数十万个文件也是秒删。
- Yii CModel中rules验证规格
dcj3sjt126com
rulesyiivalidate
Yii cValidator主要用法分析:
yii验证rulesit 分类: Yii yii的rules验证 cValidator主要属性 attributes ,builtInValidators,enableClientValidation,message,on,safe,skipOnError
 
- 基于vagrant的redis主从实验
dcj3sjt126com
vagrant
平台: Mac
工具: Vagrant
系统: Centos6.5
实验目的: Redis主从
实现思路
制作一个基于sentos6.5, 已经安装好reids的box, 添加一个脚本配置从机, 然后作为后面主机从机的基础box
制作sentos6.5+redis的box
mkdir vagrant_redis
cd vagrant_
- Memcached(二)、Centos安装Memcached服务器
frank1234
centosmemcached
一、安装gcc
rpm和yum安装memcached服务器连接没有找到,所以我使用的是make的方式安装,由于make依赖于gcc,所以要先安装gcc
开始安装,命令如下,[color=red][b]顺序一定不能出错[/b][/color]:
建议可以先切换到root用户,不然可能会遇到权限问题:su root 输入密码......
rpm -ivh kernel-head
- Remove Duplicates from Sorted List
hcx2013
remove
Given a sorted linked list, delete all duplicates such that each element appear only once.
For example,Given 1->1->2, return 1->2.Given 1->1->2->3->3, return&
- Spring4新特性——JSR310日期时间API的支持
jinnianshilongnian
spring4
Spring4新特性——泛型限定式依赖注入
Spring4新特性——核心容器的其他改进
Spring4新特性——Web开发的增强
Spring4新特性——集成Bean Validation 1.1(JSR-349)到SpringMVC
Spring4新特性——Groovy Bean定义DSL
Spring4新特性——更好的Java泛型操作API
Spring4新
- 浅谈enum与单例设计模式
247687009
java单例
在JDK1.5之前的单例实现方式有两种(懒汉式和饿汉式并无设计上的区别故看做一种),两者同是私有构
造器,导出静态成员变量,以便调用者访问。
第一种
package singleton;
public class Singleton {
//导出全局成员
public final static Singleton INSTANCE = new S
- 使用switch条件语句需要注意的几点
openwrt
cbreakswitch
1. 当满足条件的case中没有break,程序将依次执行其后的每种条件(包括default)直到遇到break跳出
int main()
{
int n = 1;
switch(n) {
case 1:
printf("--1--\n");
default:
printf("defa
- 配置Spring Mybatis JUnit测试环境的应用上下文
schnell18
springmybatisJUnit
Spring-test模块中的应用上下文和web及spring boot的有很大差异。主要试下来差异有:
单元测试的app context不支持从外部properties文件注入属性
@Value注解不能解析带通配符的路径字符串
解决第一个问题可以配置一个PropertyPlaceholderConfigurer的bean。
第二个问题的具体实例是:
 
- Java 定时任务总结一
tuoni
javaspringtimerquartztimertask
Java定时任务总结 一.从技术上分类大概分为以下三种方式: 1.Java自带的java.util.Timer类,这个类允许你调度一个java.util.TimerTask任务; 说明: java.util.Timer定时器,实际上是个线程,定时执行TimerTask类 &
- 一种防止用户生成内容站点出现商业广告以及非法有害等垃圾信息的方法
yangshangchuan
rank相似度计算文本相似度词袋模型余弦相似度
本文描述了一种在ITEYE博客频道上面出现的新型的商业广告形式及其应对方法,对于其他的用户生成内容站点类型也具有同样的适用性。
最近在ITEYE博客频道上面出现了一种新型的商业广告形式,方法如下:
1、注册多个账号(一般10个以上)。
2、从多个账号中选择一个账号,发表1-2篇博文